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 64 

Abstract 65 

The exponential growth of molecular sequence data over the past decade has enabled the 66 

construction of numerous clade-specific phylogenies encompassing hundreds or thousands of 67 

taxa. These independent studies often include overlapping data, presenting a unique 68 

opportunity to build macrophylogenies (phylogenies sampling > 1,000 taxa) for entire classes 69 

across the Tree of Life. However, the inference of large trees remains constrained by logistical, 70 

computational, and methodological challenges. The Avian Tree of Life provides an ideal model 71 
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for evaluating strategies to robustly infer macrophylogenies from intersecting datasets derived 72 

from smaller studies. In this study, we leveraged a comprehensive resource of sequence 73 

capture datasets to evaluate the phylogenetic accuracy and computational costs of four 74 

methodological approaches: (1) supermatrix approaches using concatenation, including the 75 

“fast” maximum likelihood (ML) methods, (2) filtering datasets to reduce heterogeneity, (3) 76 

supertree estimation based on published phylogenomic trees, and (4) a “divide-and-conquer” 77 

strategy, wherein smaller ML trees were estimated and subsequently combined using a 78 

supertree approach. Additionally, we examined the impact of these methods on divergence 79 

time estimation using a dataset that includes newly vetted fossil calibrations for the Avian Tree 80 

of Life. Our findings highlight the advantages of recently developed fast tree search approaches 81 

initiated with parsimony starting trees, which offer a reasonable compromise between 82 

computational efficiency and phylogenetic accuracy, facilitating inference of macrophylogenies. 83 

 84 
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Macrophylogeny, phylogenomics, supermatrix, supertree, ultraconserved elements, birds 86 

 87 

Introduction 88 

Completing the Tree of Life remains a significant bottleneck to addressing a wide range of 89 

questions in comparative biology (Cracraft and Donoghue 2004). Advances in sequencing 90 

technologies (reviewed by McCormack et al. (2013)), computational methods (e.g., Kozlov et al. 91 

2019), and user-friendly bioinformatic pipelines (e.g., Faircloth 2016) have made the production 92 

and analysis of phylogenomic datasets involving hundreds of taxa increasingly routine. 93 

However, scaling these techniques to datasets with thousands of loci and thousands of taxa 94 

presents substantial logistical, computational, and methodological challenges (Delsuc et al. 95 

2005; Philippe et al. 2011; Kapli et al. 2020). The construction of such “macrophylogenies” (Title 96 

and Rabosky 2017) often relies on combining independently produced datasets, which 97 

frequently have limited overlap and substantial missing data (Sanderson et al. 2010).  98 
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Past attempts to infer macrophylogenies from independently produced datasets typically 99 

used two general approaches: supermatrix and supertree methods. Supermatrix methods infer 100 

phylogenies directly from orthologous loci, often compiled from multiple studies. However, 101 

these methods are negatively affected by large amounts of missing data (Driskell et al. 2004; 102 

Philippe et al. 2004; Goloboff et al. 2009; Hosner et al. 2016) and varying standards of data 103 

quality (Philippe et al. 2011). Analyses of supermatrices are also vulnerable to common issues in 104 

phylogenetic analyses, such as alignment errors (Ogden and Rosenberg 2006) and the inclusion 105 

of non-orthologous sequences (Koonin 2005), which are often exacerbated in supermatrices 106 

due to the heterogeneous nature of the data. Additionally, supermatrix methods face 107 

escalating computational demands that increase nonlinearly (Bader et al. 2006) as both the 108 

width (number of sites) and height (number of taxa) of the matrix expand (Delsuc et al. 2005). 109 

Some challenges, such as data quality and alignment issues, can be mitigated to an extent by 110 

analyzing multiple datasets filtered to remove “noise” in different ways and comparing the 111 

results (Kuhl et al. 2021). However, this approach is limited by the significant computational 112 

costs of performing multiple analyses on large datasets. Supertree methods, by contrast, 113 

generate phylogenies by combining existing tree topologies (Sanderson et al. 1998; Bininda-114 

Emonds 2004; Cotton and Wilkinson 2009). These methods are more computationally efficient 115 

and can effectively incorporate trees built with heterogeneous data (Liu et al. 2001; Hinchliff et 116 

al. 2015; Redelings and Holder 2017). However, most supertree methods cannot directly 117 

estimate meaningful branch lengths. Despite the strengths and limitations of these methods, 118 

rigorous comparisons of the ability of supermatrix and supertree methods to estimate 119 

macrophylogenies using phylogenomic data remain rare. This gap largely reflects the limited 120 

availability of large-scale genomic datasets for most taxonomic groups. 121 

Class Aves (birds) is one taxonomic group with sufficient data to perform these types of 122 

comparative analyses. As the most species-rich terrestrial vertebrate group, with 11,140 species 123 

recognized (Gill et al. 2023), birds have received extensive attention from phylogenetic 124 

systematists (e.g., Hackett et al. 2008; Jetz et al. 2012; McCormack et al. 2013; Jarvis et al. 125 

2014; Burleigh et al. 2015; Prum et al. 2015; Moyle et al. 2016; Reddy et al. 2017; Oliveros et al. 126 

2019; Harvey et al. 2020; Stiller et al. 2024). Many relationships among birds are now strongly 127 
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corroborated across studies, providing a reliable framework for evaluating the accuracy of 128 

alternative approaches to estimate macrophylogenies. Another advantage of birds as a model 129 

system is the partial standardization of phylogenomic data collection through the widespread 130 

use of targeted enrichment of nuclear loci, such as ultraconserved elements (UCEs sensu 131 

Faircloth et al. 2012). Over a quarter of all avian species now have UCE data available (see 132 

below). These data have been used to resolve phylogenetic relationships among birds at both 133 

deep (e.g., McCormack et al. 2013; Jarvis et al. 2014; Oliveros et al. 2019; Harvey et al. 2020) 134 

and shallow (e.g., Smith et al. 2014; Winker et al. 2018) timescales. Most UCE studies of birds 135 

target a large, uniform set of loci (uce-5k-probe-set, available from 136 

https://github.com/faircloth-lab/uce-probe-sets; e.g., Sun et al. 2014). Some studies instead 137 

use a smaller, nested subset of these loci (uce-2.5k-probe-set) that is sometimes combined with 138 

exons commonly used in avian phylogenetics (e.g., Smith et al. 2014; Harvey et al. 2020). 139 

Although these datasets exhibit some heterogeneity – stemming from the use of different bait 140 

sets and variability in the quality of input DNA templates – extensive overlap facilitates 141 

integration into a single comprehensive dataset. 142 

In this study, we use phylogenomic data from birds to empirically evaluate the accuracy 143 

and computational cost of alternative tree estimation approaches. By assembling orthologous 144 

UCE loci from the primary literature, we aim to better understand the factors influencing the 145 

estimation of macrophylogenies. Specifically, we address the following questions: 1) Do 146 

computationally efficient methods, such as “fast” maximum likelihood (ML) estimation, 147 

supertrees, or a divide-and-conquer strategy that combines many small trees using a supertree 148 

method, recover similar numbers of expected relationships corroborated in prior studies as 149 

traditional ML methods? 2) Does filtering datasets to reduce size and heterogeneity result in 150 

topologies that recover fewer expected clades, and how does it affect compute time? 3) Does 151 

the use of different methods, which may bias branch length estimation and produce distinct 152 

topologies, affect divergence time estimation? By combining phylogenomic data from 153 

independent studies, we constructed a large-scale avian phylogeny, encompassing 2,756 154 

ingroup taxa, 2 outgroup taxa and 5,121 loci. Our findings demonstrate that it is possible to 155 

infer an accurate macrophylogeny with moderate computational cost. Moreover, the strategies 156 
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identified as most effective in this study are likely applicable to other taxonomic groups with 157 

sufficient phylogenomic data. 158 

 159 

Materials and Methods 160 

Assembling the phylogenomic data 161 

We took multiple approaches to create a database of UCE loci from existing studies of birds. We 162 

downloaded much of the data as individual alignments from 22 phylogenomic studies (Zhang et 163 

al. 2014; Bryson et al. 2016; Hosner et al. 2016; Manthey et al. 2016; McCormack et al. 2016; 164 

Burga et al. 2017; Campillo et al. 2018; Andermann et al. 2019; Andersen et al. 2019; Everson et 165 

al. 2019; McCullough et al. 2019a; McCullough et al. 2019b; Oliveros et al. 2019; Sackton et al. 166 

2019; White and Braun 2019; Harvey et al. 2020; Imfeld et al. 2020; Oliveros et al. 2020; Salter 167 

et al. 2020; Smith et al. 2023; Braun et al. 2024; for details, see Supplementary Table S1 & 168 

Supplementary Information). We noticed that several studies had overlapping or nested taxon 169 

sampling. For example, Moyle et al. (2016) collected UCE data for 104 songbird species, and 170 

these data had all been included in a later study with broader taxon sampling (Oliveros et al., 171 

2019). Therefore, we used the dataset from Oliveros et al. (2019) for downstream analyses.  172 

All studies targeted UCEs as the main genetic markers (some also targeted a small 173 

number of legacy markers), and we preferentially downloaded alignments with as little filtering 174 

as possible (e.g., no missing data cut-offs). For studies where individual alignments were 175 

unavailable, we downloaded concatenated matrices and partition files, which we converted 176 

into alignments using the “split” function of AMAS (Borowiec 2016). Finally, we extracted UCEs 177 

and 500 bp flanking sequences from genome assemblies available at NCBI (that were not under 178 

embargo; data downloaded on October 14, 2020) for species that were not represented by UCE 179 

sequences, following Tutorial III of PHYLUCE (Faircloth 2016) with the 5k probe set. 180 

We processed the sequences to retain only one individual per species, according to the 181 

IOC World Bird List v13.1 (Gill et al. 2023). When multiple individuals of the same species were 182 

present in our alignments or the same sample was used in different studies, we arbitrarily 183 

selected the representative sample based on the alphabetical order of the studies 184 
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(Supplementary Table S1). A few exceptions arose from taxonomic changes, occasionally 185 

causing minor duplication or inclusion of multiple subspecies representing the same species 186 

(see Data Availability). After verifying taxa, we performed sequence alignment with MAFFT 187 

(Katoh and Standley 2013) using default settings and the --adjustdirection option to correct for 188 

sequence orientation. Then, we filtered raw alignments with trimAl (Capella-Gutiérrez et al. 189 

2009) using the “gappyout” method to remove sites based on the gap distribution within each 190 

alignment. We refer to these alignments as the “full” dataset. We anticipated substantial 191 

heterogeneity in the original datasets used to generate our supermatrix. See Supplementary 192 

Information for how we evaluated data heterogeneity. 193 

Filtering loci and subsetting datasets 194 

To assess how different locus filtering schemes affect topology and computational cost, we 195 

created 27 filtered datasets by applying three filtering schemes serially to the full dataset (Fig. 196 

1a). First, to control for missing sequence data by taxon, i.e., effects of partial sequences, or 197 

“type II” missing data (sensu Hosner et al. 2016), we prepared two datasets where we removed 198 

taxa from alignments when they were shorter than 50% or 75% of the longest sequence in the 199 

alignment for each locus (Fig. 1a, Step I). Then we ran these two datasets, plus the full dataset, 200 

through a second stage of filtering to control for gappyness by retaining alignment positions 201 

with at least 90%, 70%, and 50% occupancy (Fig. 1a, Step II). This step helps to address potential 202 

issues with indel-induced alignment gaps (e.g., Dwivedi and Gadagkar 2009) and reduce 203 

heterogeneity that can occur at the ends of UCE alignments. Finally, for each of the nine 204 

datasets that resulted, we performed a third stage of filtering to control for taxon 205 

completeness, where we retained loci with at least 90% (n = 2,484), 70% (n = 1,932), and 50% 206 

(n = 1,380) of the total number of taxa (Fig. 1a, Step III). The last step helps to control for the 207 

effects of incomplete taxon sampling, i.e., “type I” missing data (sensu Hosner et al. 2016). We 208 

concatenated each of these datasets using PHYLUCE (Faircloth 2016) prior to phylogenetic 209 

analysis. 210 

For each filtered dataset and the full dataset, we averaged the individual-based summary 211 

statistics (see Supplementary Information) across all taxa sampled in that dataset 212 

(Supplementary Table S2). To visually inspect if taxa were clustering by study, we performed 213 
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principal component analysis (PCA) using FactoMineR v1.34 (Lê et al. 2008) on individual-based 214 

summary statistics and plotted the first two principal components using ggplot2 v3.3.5.9 215 

(Wickham 2011) in R (R Core Team 2023). We also used IQ-TREE2 (Nguyen et al. 2015) to 216 

compute locus-based summary statistics for each filtered dataset, i.e., number of loci, total 217 

sites, parsimony informative sites, average gap and ambiguity across all loci, and loci with more 218 

than 50% missing data (Supplementary Table S3). We used ComplexHeatmap (Gu 2022) to plot 219 

the locus-based summary statistics for 27 filtered datasets (Fig. 1b). 220 

Initial data exploration 221 

- Concatenated analyses 222 

We used the message passing interface (MPI) version of RAxML-NG v1.0.1 (Kozlov et al. 2019) 223 

to infer a ML phylogeny of the concatenated, full dataset (Table 1, baseline). Because this 224 

dataset was large, we ran two concurrent ML analyses that each used 800 CPUs – both used the 225 

GTR+R4 site rate substitution model, but one used parsimony to generate starting trees (MP 226 

starting trees) while the other used random starting trees. Because of the compute hours 227 

allocated to this project, we were only able to infer seven ML phylogenies using random 228 

starting trees and five ML phylogenies using MP starting trees for the RAxML-NG analysis. We 229 

selected the optimal tree as the one having the highest log-likelihood across the 12 analyses. 230 

We generated support values for the full dataset by performing ML analysis on 10 standard 231 

bootstrap (Felsenstein 1985) replicates with the GTR+R4 model. We evaluated the bootstrap 232 

replicates for convergence using the --bs-converge option. We found that these replicates had 233 

converged, and we reconciled the “best” ML tree with the bootstrap replicates using RAxML-234 

NG. 235 

To explore a faster method for ML tree estimation, we used the -fast option in IQ-TREE 236 

v2.0.5 (Nguyen et al. 2015) with the GTR+G site rate substitution model (Table 1, strategy 1). 237 

We initially inferred phylogenies from the concatenated, full dataset along with six filtered 238 

datasets that varied in numbers of loci, informative sites, and amounts of missing data. This 239 

“fasttree” approach resembles FastTree (Price et al. 2010), although it estimates two starting 240 

trees (using BIONJ (Gascuel 1997) and MP). It then optimizes the trees using rapid hill climbing 241 
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including stochastic nearest neighbor interchanges (NNI), and increased tolerance on likelihood 242 

values to speed up optimization, which has the potential to reduce accuracy (for detailed steps, 243 

see Supplementary Information). 244 

Following the inference of trees from concatenated datasets, we performed an initial 245 

quality check of the inferred phylogenies by visual assessment of the relationships, and we 246 

pruned Muscipipra vetula and Spheniscus mendiculus from trees using the drop.tip function in 247 

ape v5.7-1 (Paradis and Schliep 2019) because these appeared in positions that were unlikely. 248 

- Coalescent species tree estimation 249 

For the full dataset and each of the six filtered datasets, we estimated individual gene trees 250 

using IQ-TREE v2.1.3 (Minh et al. 2020) under the GTR+G model, and we combined the ML trees 251 

to generate a species tree using ASTRAL v5.7.8 (Zhang et al. 2018) (Table 1, strategy 2). 252 

- Building supertrees using existing phylogenomic trees 253 

Supertree methods (Table 1, strategy 3) infer phylogenies from existing trees, and we identified 254 

53 trees from 46 phylogenomic studies (McCormack et al. 2013; Jarvis et al. 2014; Lamichhaney 255 

et al. 2015; Nater et al. 2015; Prum et al. 2015; Bryson et al. 2016; Hosner et al. 2016; Manthey 256 

et al. 2016; Ottenburghs et al. 2016; Zarza et al. 2016; Burga et al. 2017; Reddy et al. 2017; 257 

Wang et al. 2017; White et al. 2017; Yonezawa et al. 2017; Andersen et al. 2018; Bruxaux et al. 258 

2018; Campillo et al. 2018; Chen et al. 2018; Ferreira et al. 2018; Musher and Cracraft 2018; 259 

Younger et al. 2018; Andermann et al. 2019; Andersen et al. 2019; Everson et al. 2019; 260 

McCullough et al. 2019a; McCullough et al. 2019b; Oliveros et al. 2019; Sackton et al. 2019; 261 

White and Braun 2019; Harvey et al. 2020; Imfeld et al. 2020; Oliveros et al. 2020; Salter et al. 262 

2020; Smith et al. 2020; Vianna et al. 2020; Catanach et al. 2021; Kirchman et al. 2021; Oliveros 263 

et al. 2021; McCullough et al. 2022; Vinay et al. 2022; Wang et al. 2022; Smith et al. 2023; Zhao 264 

et al. 2023; Braun et al. 2024; for details, see Supplementary Table S4) which have overlapping 265 

taxa with those included in the supermatrix datasets. After obtaining tree files representing all 266 

studies (see Supplementary Information), we reconciled the taxon names to match those in IOC 267 

v13.1 and pruned duplicate tips that represented the same species within a tree using the 268 

drop.tip function in ape. 269 
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Because the phylogenomic trees we downloaded included few taxa that overlapped 270 

among studies, we integrated them using three types of backbone trees: one from Burleigh et 271 

al. (2015) that we refer to as the “Burleigh backbone”, a second from Jetz et al. (2012) that we 272 

refer to as the “Jetz backbone”, and a “taxonomic” backbone (family-level or genus-level). See 273 

Supplementary Information for how we generated the Burleigh and Jetz backbones. We 274 

created the family-level taxonomic backbone based on taxon names in IOC v13.1 to: group 275 

individual taxa by family, cluster taxa from same family into a polytomy, cluster families from 276 

the same order into a polytomy, and cluster orders into infraclasses Palaeognathae, 277 

Galloanserae, and Neoaves. Finally, we enforced a tree topology to reflect a well-established 278 

topology: (outgroup,(Palaeognathae,(Galloanserae,Neoaves))). We constructed the genus-level 279 

taxonomic backbone similarly by clustering taxa from the same genus into a polytomy, then 280 

clustering by family, order, and infraclass and enforcing the same topology among infraclasses. 281 

We used matrix representation with parsimony (MRP) (Baum 1992; Ragan 1992) to 282 

generate supertrees following the pipeline described in Kimball et al. (2019). Since the 283 

supertree method can suffer from source tree incongruence (Bininda-Emonds et al. 2002), we 284 

employed a user-guided weighting scheme to address topological conflicts among source trees. 285 

Specifically, we assigned different weights to input trees based on the amount of data used to 286 

infer them (Supplementary Table S4) by including from one (low weight) to eight (high weight) 287 

copies in the supertree matrix. For example, trees based on whole-genome sequencing data, 288 

such as the Jarvis TENT tree (Jarvis et al. 2014), were given a weight of eight and included in the 289 

supertree matrix eight times. We typically weighted UCE trees as four. However, if a study 290 

included two UCE trees estimated by different approaches (e.g., methods of tree estimation or 291 

filtering strategies) but using completely or largely overlapping data, we assigned each tree a 292 

weight of two. We assigned two additional trees (Reddy et al. 2017; Yonezawa et al. 2017) a 293 

weight of two because they were based on a large number of “legacy markers” (Kimball et al. 294 

2009) extracted from genome assemblies. Finally, we assigned a weight of one to all backbone 295 

trees. 296 

After determining the weighting scheme, we created three supertree matrices: 1) 297 

weighted trees with the Burleigh and Jetz backbones; 2) weighted trees with Burleigh, Jetz, and 298 
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family-level taxonomic backbones; and 3) weighted trees with Burleigh, Jetz, and genus-level 299 

taxonomic backbones. Then we used CLANN (Creevey and McInerney 2005) to convert the 300 

input tree matrix to a binary (MRP) representation and generated supertrees using PAUP* v4.0 301 

(Swofford 2003). We conducted the searches using the parsimony ratchet (Nixon 1999) as 302 

described in Kimball et al. (2019), which used code available from 303 

https://github.com/ebraun68/ratchblock to generate PAUP blocks that ran five tree searches 304 

with different upweighting scores. Each tree search consisted of 100 replicates and produced a 305 

strict consensus tree from these replicates after the tree search concluded. For each of the 306 

three matrices, we selected the resulting supertree as the one from the five searches that had 307 

the best parsimony score. Then we pruned the resulting three supertrees to include only the 308 

taxa present in the full (supermatrix) dataset, which resulted in 2,751 taxa (seven taxa in our 309 

supermatrix were not included in published phylogenies).  310 

- Building supertrees using a divide-and-conquer approach 311 

Because supermatrix methods can be computationally intensive for large datasets, we also 312 

tested a divide-and-conquer approach that combined supermatrix and supertree methods by 313 

dividing the supermatrix into subsets of taxa, inferring trees from each subset using 314 

supermatrix methods, then integrating the resulting subset trees with supertree methods 315 

(Table 1, strategy 4). To begin the process, we designed three subsetting schemes that differed 316 

in the likely number of overlapping taxa shared between them: random subsets, partially 317 

stratified subsets, and fully stratified subsets.  318 

We created 15 random subsets by randomly drawing (with replacement) 150 taxa from 319 

the total list of taxa (2,760) in the full dataset. 320 

We created the partially stratified subsets by dividing all taxa in the full dataset into six 321 

major groups that were recovered across many studies (Supplementary Figure S1). Then, we 322 

randomly selected 7.5%, 3.1%, 7.8%, 6.8%, 7.4%, and 8.0% of the taxa within each group largely 323 

based on its size while avoiding oversampling suboscines, which produced a subset of 150 taxa. 324 

We repeated this selection process without replacement to create a total of 10 partially 325 

stratified subsets. 326 
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We created the fully stratified subsets by dividing all taxa in the full dataset into 25 groups 327 

(Supplementary Figure S2) that were based on taxonomy to ensure all taxa were represented at 328 

least once across the subsets and were included in trees with congeners (so sister relationships 329 

could hopefully be resolved). We set the number of taxa included in each subset under 200 to 330 

maximize computational efficiency given our resources (see Supplementary information). 331 

Because supertree analyses require overlapping taxa, we then manually selected “linker taxa” 332 

from outside each group and included them in the group membership. Preliminary analyses 333 

showed that using identical linker taxa across fully stratified subsets placed the linker taxa in 334 

unexpected positions in the resulting tree. Therefore, we used distinct linker taxa for each 335 

subset, which resolved this issue.  336 

We created a total of 50 subsets across all schemes. We extracted subset alignments 337 

from the aligned, concatenated, full dataset. Then, we used IQ-TREE v2.1.3 (Minh et al. 2020) to 338 

infer the “best” ML phylogenies and generate 1,000 ultrafast bootstrap replicates for each 339 

subset using the GTR+R4 model. 340 

We followed the same weighted-tree search approach described above to infer a set of 341 

supertrees representing all taxa from the 50 “best” ML subtrees. Specifically, we created five 342 

supertree matrices using: 1) the 50 best ML subtrees where each tree was given a weight (w) of 343 

one (w = 1); 2) the 50 best ML subtrees (w = 4) and the family-level backbone tree (w = 1); 3) 344 

the 50 best ML subtrees (w = 2) and the family-level backbone tree (w = 1); 4) the 50 best ML 345 

subtrees (w = 4) and the genus-level backbone tree (w = 1); and 5) the 50 best ML subtrees (w = 346 

2) and the genus-level backbone tree (w = 1). 347 

We also built 1,000 MRP matrices (each with 50 trees) from the bootstrap replicates by 348 

sampling and combining replicates from the subsets in the order they were generated: 349 

bootstrap replicate tree one from all 50 subsets combined to form MRP matrix one, bootstrap 350 

replicate tree two from all 50 subsets combined to form MRP matrix two, et cetera. Then we 351 

performed the tree search process described above for each MRP matrix to produce a set of 352 

1,000 phylogenomic supertrees that we summarized to a 50% majority rule consensus using 353 

SumTrees (Sukumaran and Holder 2010). We pruned the six supertrees generated from the 354 

steps above to include only the taxa present in the full (supermatrix) dataset. 355 
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Analyzing tree distances 356 

To visually represent differences between the various trees we inferred, we rooted trees on the 357 

crocodilian outgroup and used ete3 (Huerta-Cepas et al. 2016) to calculate pairwise normalized 358 

Robinson-Foulds distances between the two trees inferred from the full dataset, the six trees 359 

inferred from the filtered datasets, the three trees inferred from the supertree analyses, and 360 

the six trees inferred using the divide-and-conquer approach (Table 1). ASTRAL species trees 361 

were not included (see Results). We used the write.nexus.dist function in phangorn v2.11.1 362 

(Schliep 2011) to create a NEXUS block of the pairwise Robinson-Foulds distances, and we used 363 

PAUP* v4.0 (Swofford 2003) to infer a neighbor-joining (NJ) “tree-of-trees” that we rooted at 364 

the midpoint. 365 

Testing for clade monophyly 366 

Sangster et al. (2022) and earlier work (Chen and Field 2020; Queiroz et al. 2020; Sangster and 367 

Mayr 2021) highlighted several clades near the base of the avian tree that are very likely to 368 

reflect the true species tree. Modern taxonomies, such as IOC, eBird/Clements (Clements et al. 369 

2023), and Howard & Moore (Dickinson and Christidis 2014), now circumscribe orders, families, 370 

and genera in ways that largely align with recent phylogenetic insights. However, no current 371 

taxonomy is without limitations. Some families and genera continue to be refined as more 372 

information becomes available. Although there are almost certainly some named taxa that do 373 

not represent clades in the true species tree, the majority of named groups are likely to be 374 

expected clades. We compared how reliably the different tree inference methods resolved 375 

these expected clades across the avian phylogeny. These include orders, families, and genera 376 

recognized by IOC v13.1, as well as 33 high-level clades (e.g., superorder, infraclass). We 377 

generally assumed that a method was more reliable when it recovered a larger number of these 378 

groups as monophyletic (e.g., Portik and Wiens 2021). To perform these analyses, we first 379 

excluded clades that were only represented by a single species. Then we used the 380 

AssessMonophyly function in MonoPhy (Schwery and O’Meara 2016) to calculate how many of 381 

the 410 evaluated genera, 138 evaluated families, 40 evaluated orders, and 33 evaluated high-382 

level clades were not resolved as monophyletic. 383 
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Summarizing compute time 384 

We summarized and compared the compute time required for the tree inferences described 385 

above. To increase our computational capacity, analyses were run across several different 386 

computing systems: HPC@LSU (RAxML-NG analysis; https://www.hpc.lsu.edu/), AMNH Huxley 387 

HPC (initial fasttree analyses and ASTRAL analyses; 388 

https://www.amnh.org/research/computational-sciences), and UF HiPerGator (supertree and 389 

divide-and-conquer analyses; https://www.rc.ufl.edu/about/hipergator/). For each analysis, we 390 

tallied the CPU hours spent for tree searches (including bootstrap replicate searches if 391 

applicable) and optimization, and we collected the total cluster utilization for each SLURM job. 392 

For the RAxML-NG analysis of the full dataset, we combined the CPU time for the random and 393 

the MP starting trees. For the divide-and-conquer analyses, we summed the CPU hours spent 394 

for tree search across 50 subsets. Because the supertree component for the divide-and-conquer 395 

analyses used very little CPU time compared to the subset concatenation analysis, we added it 396 

directly to the total CPU time spent (for the bootstrap trees, time for 1,000 runs were added). 397 

For the regular supertree analyses, we presented the PAUP tree search time and added time for 398 

MRP matrix construction to the total CPU hours spent. To account for variations in CPU 399 

hardware performance across the three computing systems, we used the base and turbo clock 400 

speed to calculate the theoretical minimum and maximum giga floating-point operations per 401 

second (GFLOPS; 1 GFLOPS = 109 FLOPS) per core (Supplementary Table S5). This metric was 402 

then used to evaluate the relative performance of each computing system and to adjust the 403 

CPU cost accordingly (adjusted CPU time = CPU hours * GFLOPS). 404 

Tests on two filtered datasets 405 

Generating the distance matrix and BIONJ starting tree in the initial fasttree analyses was time-406 

consuming for our datasets. However, the likelihood of the resulting fasttree was only slightly 407 

improved compared to the MP starting tree, and the MP starting tree was always much better 408 

than the BIONJ tree (Supplementary Table S6). To improve fasttree search and optimization, we 409 

examined the role of the starting tree using two filtered datasets (filter1 and filter3). We chose 410 

these filter sets due to their contrasting patterns of expected clade recovery in initial 411 

exploration: filter1 performed well deeper in the tree but poorly at the tips, whereas filter3 412 
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showed the opposite pattern. Fasttree searches normally use two starting trees (MP and 413 

BIONJ), however, users can supply their own starting tree to bypass the default starting tree 414 

estimation process. We performed a total of 24 additional tree searches for each dataset with 415 

different starting trees (see Supplementary Information). We evaluated the log likelihoods of 416 

the starting tree and optimal tree and assessed expected clade recovery for the final ML tree in 417 

each analysis (Supplementary Table S7). 418 

Based on the tests using filter1 and filter3, we found that searches initiated with BIONJ 419 

and MP starting trees required a large amount of time, had a much lower likelihood, and 420 

resulted in worse expected clade recovery than the initial exploration (Supplementary Figure S3 421 

and Supplementary Table S7). In contrast, fasttrees built using only MP starting trees derived 422 

from the same filtered dataset used for the ML search consistently had much better likelihoods 423 

than those derived from other filtered datasets. These results suggest a straightforward 424 

method to improve the speed and reproducibility of fasttree searches: avoid generating the 425 

BIONJ tree and instead conduct multiple searches using MP starting trees generated from the 426 

same dataset used for the fasttree search. 427 

New fasttree method with MP starting trees 428 

We used Parsimonator v1.0.2 (https://github.com/stamatak/Parsimonator-1.0.2) to estimate 429 

four MP starting trees (parsA, parsB, parsC, and parsD; different random number seeds for each 430 

search) for each of the full and 27 filtered datasets. Each MP starting tree was used to run a 431 

fasttree analysis in IQ-TREE v2.2.2 (Nguyen et al. 2015) with parsA and parsB using the GTR+G 432 

model and parsC and parsD using the FreeRates model (GTR+R4). Two filtered datasets were 433 

identical to each other (indv75_sites50_loci90 and indv75_sites70_loci90), therefore we 434 

performed only one set of analyses for these two datasets. This resulted in a total of 108 new 435 

fasttrees, four for each dataset (Table 2). We evaluated their performance in expected clade 436 

recovery and summarized the total CPU time spent. We z-transformed each locus-based 437 

summary statistic across all filtered datasets and plotted using ComplexHeatmap with 438 

hierarchical clustering (Supplementary Figure S4). From each cluster, we selected a 439 

representative dataset that performed best in recovering expected clades. We only present the 440 

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article/doi/10.1093/sysbio/syaf080/8317229 by Louisiana State U

niversity user on 24 N
ovem

ber 2025



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

best fasttree for these representative datasets in the main text (see complete results in 441 

Supplementary Table S8). 442 

Hybrid approaches 443 

We tested whether fasttrees could improve the supertree and divide-and-conquer methods 444 

when used as backbone trees. Unlike the Jetz+Burleigh backbones used initially, our fasttrees 445 

included all taxa in the analyses, potentially providing a better backbone to compensate for 446 

limited overlap among source trees. Additionally, because our fasttrees were estimated from 447 

phylogenomic data, they may offer a more accurate representation of relationships, potentially 448 

reducing the need for taxonomic backbones. We referred to these new approaches as the 449 

“hybrid supertree approach” and “hybrid divide-and-conquer approach” (Table 2).  450 

We used the two best new fasttrees (based on expected clade recovery) and seven initial 451 

fasttrees as the backbone tree in supertree and divide-and-conquer analyses (Table 2). For the 452 

hybrid supertree approach, we conducted two sets of nine analyses (with or without a family-453 

level taxonomic backbone), each analysis with a different fasttree as the backbone. Each 454 

backbone was given a weight of one, and source trees were given different weights based on 455 

the amount of data used to infer them, as described above. For the hybrid divide-and-conquer 456 

approach, we also ran two sets of analyses, each with nine trees estimated: 1) using only a 457 

fasttree as the backbone with the 50 best ML subtrees and the fasttree backbone each given a 458 

weight of one; and 2) using a fasttree backbone and a genus-level backbone with the 50 best 459 

ML subtrees given a weight of two and the backbones given a weight of one. We then followed 460 

the same steps described above to build a binary MRP tree matrix in CLANN and generate 461 

supertrees using PAUP*. Similarly, we evaluated the performance in expected clade recovery 462 

for final output trees (Supplementary Table S9). When summarizing the total CPU time spent, 463 

we added in the compute time for generating each MP starting tree and the fasttree. All new 464 

fasttrees, MP starting trees, and hybrid approaches were run on UF HiPerGator HPC. 465 

Molecular dating 466 

We applied a total of 43 fossil calibrations for node-dating analyses (Supplementary Table S10) 467 

following best practices proposed by Parham et al. (2012), and we assigned minimum and 468 
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maximum possible ages to each calibrated node in our phylogeny. Additional information 469 

regarding the fossils selected to calibrate divergence time analyses is presented in the 470 

Supplementary Information. 471 

Then, due to the size of the resulting trees, we used TreePL (Smith and O’Meara 2012) to 472 

estimate divergence times for the (1) RAxML-NG tree inferred from the concatenated, full 473 

dataset; (2) two fasttrees using new fasttree methods based on the full dataset and the filtered 474 

dataset indiv0_sites50_loci50; 3) two supertrees (one from initial exploration and one from the 475 

hybrid approach); and 4) two divide-and-conquer trees (one from initial exploration and one 476 

from the hybrid approach). For the four supertrees and divide-and-conquer trees, we used IQ-477 

TREE2 v.2.2.2 (Nguyen et al. 2015) to optimize the tree branch lengths (--tree-fix) under both 478 

GTR+G and GTR+R4 model using the filtered dataset with the smallest amount of missing data 479 

(indv0_sites90_loci90). TreePL allows for varying rates across branches but penalizes rate 480 

differences over the tree with a rate smoothing parameter, so we identified the optimal rate 481 

smoothing parameter through cross-validation that tested 10 values (start = 1e-07; stop = 482 

10,000). We also used the “prime” option to identify the best optimization parameters and the 483 

“thorough” option to allow the program to iterate until convergence. 484 

We extracted crown ages only for groups that were monophyletic across seven time trees 485 

and compared the age of each group across trees. We also compared the time estimates for 12 486 

major groups (that have been consistently resolved across studies and that represent both 487 

ancient and recently diverged clades as well as both fast- and slow-evolving clades) to those in 488 

other studies (Claramunt and Cracraft 2015; Prum et al. 2015; Kimball et al. 2019; Kuhl et al. 489 

2021; Brocklehurst and Field 2024; Claramunt et al. 2024; Stiller et al. 2024; Wu et al. 2024a). 490 

Divergences estimated under GTR+G and GTR+R4 models were very similar (see Data 491 

Availability), thus only results from GTR+R4 model were used for presentation. We also 492 

computed relative divergence time for these clades by scaling the divergences to Neognathae. 493 

 494 
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Results 495 

Taxon sampling 496 

Our UCE data matrix contained DNA sequence alignments for 5,121 target captured loci, with 497 

an average length of 665 base pairs (bp) and a total of 2,047,980 parsimony informative sites. 498 

The full dataset contained 2,758 tips (including two crocodilian outgroups); members of all 44 499 

extant bird orders and one extinct order (Dinornithiformes); 250 of 253 (98.8%) extant bird 500 

families and one extinct family (Emeidae); 1,081 genera; and 2,747 unique species.  501 

Dataset characteristics and filtering 502 

Data heterogeneity was evident in descriptive statistics for individual taxa. For instance, taxa 503 

showed considerable variation in locus count, sequence length, and individual-based parsimony 504 

informative sites both within and between studies (Supplementary Figure S5). PCA of these 505 

summary statistics revealed distinct clusters corresponding to their source datasets 506 

(Supplementary Figure S6). As anticipated, more stringent filtering schemes substantially 507 

increased homogeneity among studies and reduced the amount of missing data. However, 508 

these improvements reduced the number of informative sites (Supplementary Figure S5).  509 

Baseline phylogeny 510 

The RAxML-NG tree of the full concatenated dataset recovered all 33 high-level clades 511 

identified by Sangster et al. (2022), all 40 evaluated orders (excluding monotypic or single-512 

sampled orders), all but two of the 138 evaluated families, and all but 38 of the 410 evaluated 513 

genera (Fig. 2; Supplementary Figure S7).  514 

Although the RAxML-NG tree appeared to provide an accurate estimate of avian 515 

phylogeny based on expected clade recovery, generating this tree required significant 516 

computational resources – approximately 428,000 CPU hours for the primary search and 517 

additional 323,000 CPU hours for a limited number of bootstrap analyses.  518 

Initial exploration 519 

We explored four alternative approaches (Table 1) that were more computationally efficient 520 

than standard ML: (1) implementing a fast ML estimation approach, (2) estimating individual 521 
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gene trees and combining them into a species tree, (3) combining source trees into a supertree, 522 

and (4) using a divide-and-conquer strategy in which trees were estimated from data subsets 523 

and then combined into a supertree. The primary goal of these analyses was to determine 524 

whether any of these computationally efficient methods could produce trees as accurate as the 525 

RAxML-NG tree.  526 

The fasttree (Table 1, strategy 1) estimated from the full dataset did not perform as well 527 

as either the RAxML-NG tree or the best trees from other approaches (Fig. 3). Filtering 528 

appeared to improve the performance of fasttree analyses, with the best results based on the 529 

expected clade recovery criterion observed in trees inferred from the least aggressively filtered 530 

datasets (filter1 and filter2). By contrast, the most aggressively filtered datasets (filter5 and 531 

filter6) performed poorly with clade recovery similar to that of the full dataset fasttree, 532 

suggesting diminishing returns with overly stringent filtering.  533 

The ASTRAL species trees (Table 1, strategy 2) recovered substantially fewer expected 534 

clades than either the RAxML-NG tree or the fasttrees, regardless of the filtering procedure (or 535 

lack thereof) used to generate the alignments for gene tree estimation. The total number of 536 

unresolved groups ranged from 144 to 207 and adjusted CPU time (CPU hours * GFLOPS) 537 

ranged from 29,549 to 1,977,494 (Supplementary Table S11).  538 

For the supertree analysis (Table 1; strategy 3), the supertree constructed without 539 

taxonomic backbones (S1) performed poorly in recovering expected clades (Fig. 3). In contrast, 540 

the two supertrees with taxonomic backbones (S2 & S3) performed as well as, or slightly better 541 

than, the RAxML-NG tree in terms of expected clade recovery while still requiring minimal 542 

compute time (Fig. 3).  543 

The divide-and-conquer approach (Table 1, strategy 4) without taxonomic backbones 544 

outperformed the supertree without backbones in recovering expected clades (Fig. 3). 545 

However, performance comparable to the RAxML-NG tree was achieved only when a genus 546 

backbone was included. Despite requiring the estimation of input trees from the supermatrix, 547 

this method was much more computationally efficient than the RAxML-NG analysis (Fig. 3).  548 

The two divide-and-conquer trees using the genus backbone (T5 & T6) performed well 549 

overall but exhibited polytomies within heavily sampled passerine families, such as Tyrannidae 550 
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and Thamnophilidae, as well as among some oscine families. Notably, these polytomies were 551 

not observed in Oliveros et al. (2019) and Harvey et al. (2020), which were the sources of most 552 

of the passerine data. The number of polytomies decreased when the weight of the source 553 

trees relative to the genus backbone was reduced (lower in T6 [2:1] versus higher in T5 [4:1]; 554 

see Supplementary Information for details on comparing polytomies). However, this 555 

adjustment did not affect the recovery of expected clades.  556 

The tree-of-trees (Fig. 3) indicated that the method of inference (supermatrix, supertree, 557 

or divide-and-conquer) strongly influenced topological similarity. Notably, supertree and divide-558 

and-conquer methods formed distinct clusters. For the supertrees, this clustering may reflect 559 

biases introduced by relationships within the source trees, which differed from those inferred 560 

using other methods. Similarly, the clustering of divide-and-conquer analyses likely stems from 561 

the use of the same underlying subset trees (or their bootstrap consensus), which may have 562 

contributed unique relationships within the data subsets. By contrast, the fasttrees did not 563 

form a single cluster, and branch lengths in the NJ tree indicated greater variation among these 564 

analyses compared to the other methods. This increased variation is expected, given that the 565 

fasttree datasets differed in content due to filtering. 566 

Fasttrees with MP starting trees 567 

We conducted four searches on the full dataset and each of the 27 filtered datasets. Analysis of 568 

expected clade recovery for all new fasttrees (Supplementary Table S8) revealed that one 569 

fasttree from the full dataset (using an MP starting tree with the GTR+R4 model in replicate 570 

search D, i.e., FreeRates parsD) matched the RAxML-NG tree in both the number and identity of 571 

expected clades (Figs. 4 & 5). This best full dataset fasttree closely approximated the RAxML-NG 572 

tree in tree space (Fig. 4), but it was far more computationally efficient (69- to 178-fold 573 

difference in the adjusted CPU costs between the two analyses, depending on the dynamic CPU 574 

speed).  575 

We compared the performance of filtered datasets to evaluate the effects of different 576 

filtering strategies. At the genus level, datasets filtered with indv0 and loci50 (keeping all taxa 577 

within specific loci and retaining loci sampled in ≥50% of taxa) achieved the best expected clade 578 

recovery. For high-level clades, datasets filtered with sites50 (removing alignment columns 579 
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where ≥50% of taxa were gaps or missing) performed best. In contrast, more aggressive 580 

filtering approaches, such as loci90 (retaining loci sampled in ≥90% of taxa) and indv75 (keeping 581 

taxa with ≥75% of sequence completeness), consistently resulted in poorer clade recovery. As 582 

expected, filtering reduced the number of sites and CPU time was positively correlated with the 583 

size of the supermatrix across all fasttree analyses (R2 = 0.8; Supplementary Figure S8). While 584 

we observed no consistent pattern in clade recovery between trees estimated with FreeRates 585 

and GAMMA models, GAMMA models generally required less compute time.  586 

Hybrid supertrees and hybrid divide-and-conquer trees 587 

Using a fasttree backbone in the hybrid supertree approach led to poor clade recovery, with 588 

some iterations performing worse than our initial analyses using the Jetz+Burleigh backbones 589 

(Fig. 4 and Supplementary Table S9). However, as in the initial analyses, adding a taxonomic 590 

backbone greatly improved performance, with several hybrid supertree analyses recovering 591 

more expected clades than the RAxML-NG tree. Despite these improvements, a better 592 

backbone did not eliminate the novel relationships introduced in the supertree analyses. Hybrid 593 

supertrees still produced topologies that were the most divergent from those inferred by 594 

RAxML-NG, our best new fasttrees, or our best hybrid divide-and-conquer trees (Fig. 4).  595 

The hybrid divide-and-conquer trees were similar to the RAxML-NG tree (Fig. 4). 596 

However, even when using a fasttree with strong expected taxa recovery (e.g., the fasttree 597 

fulldata parsD), these trees recovered fewer expected clades than the RAxML-NG analysis. 598 

While the inclusion of a taxonomic backbone provided some improvement, none of the hybrid 599 

divide-and-conquer trees outperformed the best hybrid supertrees (Fig. 4). Additionally, some 600 

polytomies observed in the initial analyses persisted, even with the inclusion of both the 601 

fasttree and a taxonomic backbone.  602 

Divergence time estimation 603 

Divergence time estimates for key nodes were generally similar across our seven trees (Fig. 7), 604 

despite being estimated using different methods and datasets. Lower-level ranks, e.g., genus, in 605 

general showed higher variation in crown ages across trees when compared to higher-level 606 

ranks (Fig. 7a). However, the number of outliers (points that fell outside 1.5x the interquartile 607 
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range for all clades of the same rank) was smaller as a proportion of the total clades considered 608 

in lower-level ranks. Recent studies also show broadly similar relative divergence times (to 609 

Neognathae) for comparable groups (Fig. 7b), although there were differences among time 610 

trees (especially for published studies) in the absolute divergence times (Fig. 7c). 611 

 612 

Discussion 613 

Baseline phylogeny and expected clade recovery 614 

The RAxML-NG tree provided a reliable estimate of the bird phylogeny, and most cases of non-615 

monophyly at lower taxonomic levels matched results from recently published phylogenomic 616 

studies (e.g., Harvey et al. 2020; Smith et al. 2023). Some instances of non-monophyly likely 617 

reflected artifacts, such as limited taxon sampling or insufficient sequence data, particularly 618 

from historical museum specimens, while others appear to reflect the true phylogenetic 619 

relationships of genera or families for which formal taxonomic revision is pending (e.g., 620 

Tyranneutes nested in Neopelma (Leite et al. 2021), Antilophia in Chiroxiphia (Zhao et al. 2023), 621 

and Tityridae divided into Tityridae sensu stricto, Onychorhynchidae, and Oxyruncidae (Oliveros 622 

et al. 2019)). However, the RAxML-NG analysis required substantial computational resources, 623 

which was expected given the long-recognized challenges of large tree searches under the 624 

likelihood criterion (reviewed by Yang and Rannala 2012). The recently introduced Early 625 

Stopping version of RAxML-NG, which offers up to a 5-fold speedup for large DNA datasets and 626 

up to 10-fold speedup when using MP starting trees (Togkousidis et al. 2025), may reduce some 627 

of these computational demands. Conversely, incorporating MP starting trees to fasttree 628 

approaches significantly reduces the computational burden while producing trees that appear 629 

to be of approximately equal quality – providing a promising alternative for scaling future 630 

phylogenetic inferences including thousands of loci to even larger numbers of tips (5,000+). 631 

Fasttree approaches 632 

As noted above, we evaluated alternative analytical approaches that might offer similar or even 633 

greater accuracy while requiring fewer computational resources than RAxML-NG. Our initial 634 
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exploration of computationally efficient methods found that fasttrees, while not as accurate as 635 

the RAxML-NG tree or the best-performing supertrees and divide-and-conquer trees, still 636 

demonstrated relatively good recovery of expected clades (Fig. 3). Previous studies found that 637 

trimming the alignments did not improve expected clade recovery (Tan et al. 2015; Portik and 638 

Wiens 2021). However, this was not the case for our initial fasttree analyses, since the fasttree 639 

based on the full dataset exhibited poorer clade recovery than most of the filtered datasets. 640 

This result suggests that the heterogeneity of the full dataset may interfere with fasttree 641 

searches, unlike the RAxML-NG analysis, which appeared more robust to heterogeneity.  642 

We improved the fasttree search and optimization process by conducting four replicate 643 

searches, each initiated using an MP starting tree. This modification resulted in a best full 644 

dataset fasttree that achieved phylogenetic accuracy comparable to the RAxML-NG tree, yet 645 

with a substantially reduced computational burden (Fig. 4). Although the two trees differed in 646 

the arrangement of Otidimorphae, Columbimorphae, and Opisthocomiformes (Supplementary 647 

Figure S9), the relationships among high-level clades at the base of Neoaves remain a 648 

particularly challenging phylogenetic problem (reviewed by Braun et al. 2019), with no 649 

consensus achieved to date (cf. Stiller et al. 2024; Wu et al. 2024a). 650 

In contrast to our attempts to improve search efficiency, dataset filtering approaches 651 

yielded mixed results. Unlike our initial analyses, filtering to remove missing data did not 652 

enhance new fasttree performance in recovering expected clades, likely because filtered 653 

datasets also had fewer parsimony informative sites (Fig. 6). This result agrees with the findings 654 

in Tan et al. (2015) and Portik and Wiens (2021) that filtering did not increase expected clades 655 

recovery. Additionally, we found that site filtering had a greater impact on high-level clade 656 

recovery, whereas locus and individual filtering more strongly influenced resolution of expected 657 

genera. The most effective filtering strategy likely depends on the taxonomic level of interest, 658 

and a significant benefit of the new fasttree approach is that testing various filtering strategies 659 

and models is more feasible due to the significantly reduced compute time. This efficiency also 660 

makes it possible to incorporate multiple replicates of tree search to account for stochasticity. 661 

As phylogenomic datasets continue to grow in size, further advancements in computational 662 

efficiency for tree estimation will remain essential. 663 
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Species tree methods on heterogeneous datasets  664 

Results from the ASTRAL analyses are consistent with previous studies, which have shown that 665 

poor sequence recovery and missing data can bias gene tree summary methods (Liu et al. 2010; 666 

Springer and Gatesy 2014; Hosner et al. 2016; Xi et al. 2016; Zhao et al. 2025). One contributing 667 

factor is the distribution of informative sites in UCE alignments, which are disproportionately 668 

located near the ends of the alignments (Faircloth et al. 2012). These regions may be 669 

underrepresented when sequence recovery is poor, particularly in lower-quality samples such 670 

as those derived from historical museum specimens. Consequently, taxa with poor sequence 671 

recovery may be misplaced in estimated gene trees or excluded from certain gene trees 672 

altogether, leading to inaccuracies in the ASTRAL tree. Improving ASTRAL trees would entail 673 

excluding lower-quality samples and result in a tree with many fewer tips. Overall, ASTRAL was 674 

not an accurate method for estimating macrophylogeny with this type of heterogeneous UCE 675 

data, even when using the more homogenous filtered subsets. Additionally, ASTRAL was less 676 

computationally efficient than many of the other methods tested (Supplementary Table S11). 677 

Supertree and divide-and-conquer approaches 678 

Despite being computationally efficient, the supertrees contained novel nodes that 679 

contradicted all input trees, potentially due to issues of hidden support (e.g., Gatesy et al. 2004; 680 

Wilkinson et al. 2005). While signals from the input phylogenomic trees should dominate the 681 

supertree topology due to their higher weights relative to the backbones, novel relationships 682 

likely arose from topological incompatibilities or asymmetric taxon sampling in the published 683 

phylogenomic trees used as input. These issues appeared to be intrinsic to the structures of the 684 

input trees (see examples in Supplementary Information). Consequently, hybrid supertrees still 685 

produced topologies that were the most divergent from other trees (Fig. 4). This outcome may 686 

be explained by the reliance of supertree methods on input trees generated using different 687 

analytical approaches by different investigators, as we combined trees from 46 distinct 688 

phylogenomic studies. Although the compute time required for supertree analyses was minimal 689 

(Fig. 3), this does not include the time needed to locate and code the source trees for analysis. 690 

Overall, we were able to produce supertrees that provided reasonably accurate 691 

representations of the Avian Tree of Life, but the methods were not straightforward. Consistent 692 
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with previous studies, we found that incorporating backbones was critical for improving 693 

taxonomic overlap (Redelings and Holder 2017; Kimball et al. 2019; McTavish et al. 2024). An 694 

alternative or complementary approach involves pruning problematic taxa from the source 695 

trees (Bininda-Emonds et al. 2002) or upweighting more accurate source trees (Bininda-Emonds 696 

and Sanderson 2001). While these strategies can improve phylogenetic accuracy, they require 697 

prior knowledge and subjective decisions about phylogenetic relationships, which may not 698 

always be feasible or unbiased. 699 

Compared to typical supertree approaches, the divide-and-conquer method has 700 

advantages, as the individual trees integrated using supertree techniques are generated under 701 

consistent programs, parameter settings, and computing platforms. This approach establishes a 702 

direct link between sequence data and supertree estimation, addressing the data-dissociation 703 

problem inherent in traditional supertree methods (e.g., Moore et al. 2006). However, all our 704 

divide-and-conquer trees, even with the taxonomic backbones, included unresolved nodes 705 

which were particularly evident in species-rich clades where limited overlap in taxon sampling 706 

across subsets may have contributed to the increased number of polytomies. This suggests that 707 

the 50 subsets used for the divide-and-conquer analyses were insufficient and that additional 708 

subsets may be required to improve resolution, albeit at the cost of increased compute time.  709 

Although the source trees differed between the supertree and divide-and-conquer 710 

analyses, both used the same approach to estimate the final tree and faced similar limitations. 711 

In both cases, the best results were achieved using taxonomic backbones. While standardized 712 

taxonomic backbones are available for well-studied groups like birds, their absence in many 713 

other taxonomic groups limits the broader applicability of these methods. Even where these 714 

backbones are available, vastly different ranks may be used for clades of similar ages and 715 

species numbers in different parts of the Tree of Life. For example, there are 14,348 named ant 716 

species (Bolton 2025) and the ant crown group has an age of approximately 127 Ma (Borowiec 717 

et al. 2025), making the ants slightly more species-rich and older than birds. However, ants are 718 

classified as a family (Formicidae), rather than a class like birds, and this limits the number of 719 

taxonomic ranks that can be used for a supertree backbone or in assessment of clade recovery. 720 

Overall, these issues may limit the utility of supertree methods. 721 
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Identifying an appropriate weighting scheme for supertree methods is another challenge. 722 

The approach we used for our MRP gave a low weight for the backbone and assigned the 723 

largest weights to source trees based on the largest datasets, but it was ultimately ad hoc. 724 

Fortunately, the computational efficiency of supertree analyses allows for testing alternative 725 

weighting schemes (e.g., Moore et al. 2006; Baker et al. 2009; Nyakatura and Bininda-Emonds 726 

2012) to evaluate their impact on resolution – provided robust criteria, such as expected clade 727 

recovery, are available for comparison. Finally, neither method inherently supports branch 728 

length estimation. Various approaches can assign branch lengths to supertrees, with or without 729 

molecular data (e.g., Purvis 1995; Bininda-Emonds et al. 1999; Torices 2010; Kimball et al. 730 

2019). In our study, branch length-optimized supertrees and divide-and-conquer trees yielded 731 

divergence time estimates that were similar to those from the concatenated trees, suggesting 732 

this limitation may not be critical for most studies. 733 

Divergence time estimation 734 

The timing of events in the avian phylogeny has been a topic of substantial debate. Some 735 

studies support an upper Cretaceous ancient origin for most high-level clades in Neoaves 736 

(Pacheco et al. 2011; Mitchell et al. 2015; Wu et al. 2024a; Wu et al. 2024b), while others 737 

suggest these lineages originated much closer to the Cretaceous-Paleogene (K-Pg) mass 738 

extinction event (~66 Ma) (Jarvis et al. 2014; Claramunt and Cracraft 2015; Prum et al. 2015; 739 

Kimball et al. 2019; Brocklehurst and Field 2024; Claramunt et al. 2024; Stiller et al. 2024). 740 

Despite these differences, all studies agree that crown birds originated in the mid- to late-741 

Cretaceous, consistent with crown bird fossils predating the K-Pg boundary (e.g., Field et al. 742 

2020).  743 

Despite variation in tree topologies and branch lengths due to differences in data 744 

completeness, divergence time estimates were largely consistent across our methods (Fig. 7). 745 

This consistency held regardless of whether branch lengths were estimated during the tree 746 

search (RAxML-NG and fasttrees) or added later for methods that do not estimate meaningful 747 

branch lengths (supertree and divide-and-conquer analyses). These findings suggest that for 748 

downstream comparative analyses requiring time-calibrated trees, the choice of tree 749 

estimation method may have minimal impact, especially for deeper nodes, provided the 750 
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method reliably recovers topological relationships. These results, supported by our calibrations, 751 

corroborate the hypothesis that the rapid diversification of modern birds occurred near the K-752 

Pg event. Taking these factors into account, we present the first “macrophylogenomic tree” for 753 

birds, a resource that can be leveraged in future comparative research. 754 

 755 

Conclusions 756 

Overall, our analyses demonstrate that accurate macrophylogenies can be estimated using 757 

computationally efficient methods. This was achieved with a heterogeneous dataset assembled 758 

from many independent studies, reflecting the likely approach for estimating most large-scale 759 

phylogenies across the Tree of Life. While assembling such datasets introduces heterogeneity, 760 

our results demonstrate that filtering may not always be necessary. In fact, filtering can lead to 761 

lower accuracy, as we observed, where fewer expected clades were recovered from filtered 762 

datasets compared to the full dataset. 763 

Our study employed the avian taxonomy from IOC v13.1 (2023) as the basis for the 764 

expected clades and the taxonomic backbones. This version provided a consistent and well-765 

supported framework at the time of analysis. As ongoing research continues to refine our 766 

understanding of avian phylogenetics, more recent taxonomies can help resolve previously 767 

uncertain relationships. These updated resources can offer an even greater foundation for 768 

future studies, and our approach demonstrates the utility of a stable baseline for evaluating 769 

methodological performance. 770 

Although we successfully estimated trees using several approaches that appeared 771 

accurate based on expected clade criterion, traditional supertree and divide-and-conquer 772 

methods required additional information, such as taxonomic backbones, to achieve results 773 

comparable to our best ML estimates. By contrast, our new fasttree approach with MP starting 774 

trees using the full dataset provided a strong alternative to RAxML-NG, delivering similar 775 

topological accuracy and branch length estimates with a substantially reduced computational 776 

burden. Using this approach, replicate analyses to test different MP starting trees and models is 777 

also computationally efficient, and simple criteria, such as likelihood values, can be used to 778 
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assess the resulting trees for those taxonomic groups that lack sufficient study to define 779 

expected clades. Thus, the new fasttree approach we used can be broadly applicable to any 780 

taxonomic group. By demonstrating the feasibility of computationally efficient methods, this 781 

study offers a roadmap for constructing large-scale phylogenies across the Tree of Life. 782 

 783 

Data Availability 784 

All the original data (accessions, alignments, summary statistics, taxon subsets, summary of all 785 

fasttree runs, clade ages and tree files) and scripts necessary to reproduce the analyses 786 

reported in this study can be accessed through the Dryad link: 787 

https://doi.org/10.5061/dryad.5dv41nsgw. 788 
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 1244 

Figure Legends 1245 

 1246 

Figure 1. Filtering schemes and information content of different datasets. a) We used a 1247 

combination of three strategies to filter datasets. Step I. Indv refers to the removal of individual 1248 

taxa with short sequences for specific loci: indv0 indicates that we did not conduct this filtering 1249 

step; indv50 and indv75 indicate that sequences shorter than 50% and 75% of the longest 1250 

sequence for that alignment were removed. Step II. Sites refers to the trimming of sites 1251 

dominated by gaps and missing data: sites50 indicates that alignment columns where ≥50% of 1252 

taxa were gaps or missing are removed; sites70 and sites90 removed columns with ≥70% or 1253 

≥90% gaps or missing data, respectively. The percentage of taxa with gaps or missing data in a 1254 

column reflects the number of taxa sampled for the locus of interest. Step III. Loci refers to the 1255 
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removal of poorly sampled loci: loci50, loci70, and loci90 indicate that loci are retained only if 1256 

they are sampled for ≥50%, ≥70%, and ≥90% (respectively) of taxa in the full data matrix. b) 1257 

Summary statistics (total number of loci, total number of sites, total number of parsimony 1258 

informative sites, loci with > 50% data missing, and average proportion of gaps and ambiguities 1259 

[“-”, “?” and “N”] across all loci) of the sequence alignments in all 27 filtered datasets. For 1260 

missing data information (Stat4 and Stat5), hotter colors represent more missing data. 1261 

 1262 

 1263 

Figure 2. A genus-level RAxML-NG tree with branch lengths converted to divergence time using 1264 

TreePL. Major bird clades are color-coded, while three lineages (Gruiformes, Charadriiformes 1265 

and Opisthocomiformes; see Reddy et al. 2017) that were not placed within a strongly 1266 
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corroborated superordinal clade, remain uncolored (silhouettes in gray). Colored bars in the 1267 

outer ring indicate genera that are monophyletic (blue; n = 372) and non-monophyletic (red; n 1268 

= 38) in this phylogeny. Monotypic genera (n = 334 with a single species currently recognized in 1269 

IOC World Bird List v13.1) and genera represented by a single sample in our dataset (n = 337) 1270 

are gray. The concentric gray circles and adjacent integer values indicate 20 Ma time intervals. 1271 

The black circle indicates the K-Pg boundary at 66 Ma. See Supplementary Figure S7 for a 1272 

version of this tree with tip labels. 1273 

 1274 

 1275 

Figure 3. Similarity and performance of trees from the initial exploration. The phylogram 1276 

represents tree similarity measured with normalized Robinson-Foulds distances and was 1277 

constructed using neighbor-joining followed by midpoint rooting. ASTRAL results are not 1278 

included but can be found in the Supplementary Table S11. For each tree, we summarized the 1279 

number of high-level clades, orders, families, and genera recognized by IOC World Bird List 1280 

v13.1 that are not monophyletic in the tree; therefore, the higher the number, the more non-1281 

monophyletic groups. Non-monophyly may be due to artifacts in phylogenetic inference or 1282 

taxonomic classification that requires revision. The adjusted CPU time (CPU hours * GFLOPS) 1283 

required for each analysis is shown at the right (see Methods for details). 1284 

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article/doi/10.1093/sysbio/syaf080/8317229 by Louisiana State U

niversity user on 24 N
ovem

ber 2025



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 1285 

 1286 

Figure 4. Similarity and performance of trees from the modified methods. Here, we only 1287 

present the representative trees for each approach. Full results can be found in Supplementary 1288 

Tables S8-S9. For the two hybrid approaches, we added in the time for running the backbone 1289 

tree. For the new fasttrees with MP starting trees, we summarized the compute time for 1290 

running four fasttrees analyses for each dataset (using different MP starting trees under GTR+G 1291 

[parsA & parsB] or GTR+R4 [parsC & parsD] model) and present the total time of four runs.  1292 
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 1294 

 1295 

Figure 5. a) Cladogram showing relationships among orders in the best fasttree using the full 1296 

dataset and the new fasttree approach with MP starting trees (tree no. 8). Vertical bars next to 1297 

order names indicate composition of high-level clades. b) We compared recovery of high-level 1298 

clades in trees estimated from the full dataset (both by RAxML-NG and initial fasttree analysis 1299 

via IQ-TREE) and trees with the best expected clade recovery using various approaches: two 1300 

initial fasttrees using filtered datasets, the initial supertree and divide-and-conquer trees, the 1301 

new fasttrees using MP starting trees (filtered dataset and full dataset), and the trees using 1302 

hybrid supertree and divide-and-conquer methods. 1303 
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 1305 

 1306 

Figure 6. A comparison between the number of unresolved expected clades (genera, high-level 1307 

clades, and all expected clades combined) and parsimony informative sites (top panels), as well 1308 

as average proportion of gaps and ambiguities (“-”, “?” or “N”) across all locus alignments for 1309 

the dataset (bottom panels). For each filtered dataset, four fasttrees with different parsimony 1310 

starting trees were evaluated. We applied jitter to points when two shapes were completely 1311 

overlapping so that both shapes would be visible. 1312 
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 1314 

 1315 

Figure 7. Variation in estimated divergence times for different analyses. a) Standard deviations 1316 

of crown ages (Ma) for evaluated clades in four ranks (genus, family, order and high-level 1317 

clades) were calculated using our time trees. Only monophyletic groups were evaluated. The 1318 
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plot of standard deviations shows their median, interquartile range (box), and 1.5x the 1319 

interquartile range (whiskers). b) Crown ages for 12 major avian clades with relative divergence 1320 

time (to Neognathae) for our time times. Crown ages from eight published time trees are 1321 

included for comparison. c) Crown ages for 12 major avian clades shown as absolute divergence 1322 

time. 1323 
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 1325 

Table 1. Summary of datasets, analyses, and phylogenetic trees in our initial exploration. The six 1326 

filtered datasets were numbered based on total number of sites; filter1 included the highest 1327 

number of sites and filter6 included the lowest number of sites.  1328 

METHOD ANALYSIS INPUT DATASET TREE 

Supermatrix 
(baseline) 

RAxML-NG Full dataset RAxML-NG full 
dataset 

Supermatrix 
(Strategy 1) 

Fasttree via IQ-TREE Full dataset Fasttree full 
dataset 

Filter1 (indv50_sites50_loci50) Fasttree filter1 
Filter2 (indv0_sites50_loci70) Fasttree filter2 

Filter3 (indv0_sites90_loci50) Fasttree filter3 
Filter4 (indv50_sites50_loci70) Fasttree filter4 
Filter5 (indv75_sites90_loci70) Fasttree filter5 
Filter6 (indv50_sites90_loci90) Fasttree filter6 

Coalescent 
species tree 
(Strategy 2) 

Gene tree estimation 
via IQ-TREE 
& 
Gene tree summary via 
ASTRAL 

Full dataset See Data 
Availability 
section 

Filter1 (indv50_sites50_loci50) 
Filter2 (indv0_sites50_loci70) 
Filter3 (indv0_sites90_loci50) 
Filter4 (indv50_sites50_loci70) 
Filter5 (indv75_sites90_loci70) 
Filter6 (indv50_sites90_loci90) 

Supertree 
(Strategy 3) 

Without taxonomic 
backbone 

PublishedTrees+Jetz+Burleigh S1 

Family backbone PublishedTrees+Jetz+Burleigh+Familybackbone S2 

Genus backbone PublishedTrees+Jetz+Burleigh+Genusbackbone S3 

Divide-and-
conquer 
(Strategy 4) 

Without backbone OptimalTrees T1 

Without backbone BootstrapTrees T2 

Family backbone 
weighted 1:4 

OptimalTrees+FamilyBackbone4:1 T3 

Family backbone 
weighted 1:2 

OptimalTrees+FamilyBackbone2:1 T4 

Genus backbone 
weighted 1:4 

OptimalTrees+GenusBackbone4:1 T5 

Genus backbone 
weighted 1:2 

OptimalTrees+GenusBackbone2:1 T6 

 1329 
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Table 2. Summary of datasets, analyses, and phylogenetic trees using modified methods. 1331 

METHOD ANALYSIS INPUT DATASET TREE 

FasƩrees 
with MP 
starƟng trees 

FasƩree via IQ-
TREE using 
parsimony starƟng 
trees esƟmated by 
Parsimonator 

Full dataset 
GTR+G Replicates A,B New fasƩrees, 

four for each 
dataset (GAMMA 
parsA, GAMMA 
parsB, FreeRates 
parsC, FreeRates 
parsD) 

GTR+R4 Replicates C,D 

27 filtered 
datasets 

GTR+G Replicates A,B 

GTR+R4 Replicates C,D 

Hybrid 
supertree 

Include a fasƩree 
backbone 

PublishedTrees + FasƩree Fulldata Nine hybrid 
supertrees with 
different fasƩree 
as backbone, 
without 
taxonomic 
backbone 

PublishedTrees + FasƩree filter1 – 6 
PublishedTrees + Fulldata_FreeRates_parsD 
PublishedTrees + 
indv0_sites50_loci50_GAMMA_parsB 

Include a fasƩree 
and a family 
backbone 

PublishedTrees + FasƩree Fulldata + 
Familybackbone 

Nine hybrid 
supertrees with 
different fasƩree 
plus a family-level 
taxonomic tree as 
backbones 

PublishedTrees + FasƩree filter1 – 6 + 
Familybackbone 
PublishedTrees + Fulldata_FreeRates_parsD + 
Familybackbone 
PublishedTrees + 
indv0_sites50_loci50_GAMMA_parsB + 
Familybackbone 

Hybrid 
divide-and-
conquer 

Include a fasƩree 
as backbone 

OpƟmalTrees + FasƩree Fulldata Nine hybrid 
divide-and-
conquer trees 
with different 
fasƩree as 
backbone, 
without 
taxonomic 
backbone 

OpƟmalTrees + FasƩree filter1 – 6 

OpƟmalTrees + Fulldata_FreeRates_parsD 

OpƟmalTrees + 
indv0_sites50_loci50_GAMMA_parsB 

Include a fasƩree 
and a genus 
backbone 

OpƟmalTrees + FasƩree Fulldata + 
GenusBackbone 

Nine hybrid 
divide-and-
conquer trees 
with different 
fasƩree plus a 
genus-level 
taxonomic tree as 
backbones 

OpƟmalTrees + FasƩree filter1 – 6 + 
GenusBackbone 
OpƟmalTrees + Fulldata_FreeRates_parsD + 
GenusBackbone 
OpƟmalTrees + 
indv0_sites50_loci50_GAMMA_parsB + 
GenusBackbone 
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