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Abstract

The exponential growth of molecular sequence data over the past decade has enabled the
construction of numerous clade-specific phylogenies encompassing hundreds or thousands of
taxa. These independent studies often include overlapping data, presenting a unique
opportunity to build macrophylogenies (phylogenies sampling > 1,000 taxa) for entire classes
across theTree of Life. However, the inference of large trees remains constrained by logistical,

computational, and methodological challenges. The Avian Tree of Life provides an ideal model
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for evaluating strategies to robustly infer macrophylogenies from intersecting datasets derived
from smaller studies. In this study, we leveraged a comprehensive resource of sequence
capture datasets to evaluate the phylogenetic accuracy and computational costs of four
methodological approaches: (1) supermatrix approaches using concatenation, including the
“fast” maximum likelihood (ML) methods, (2) filtering datasets to reduce heterogeneity, (3)
supertree estimation based on published phylogenomic trees, and (4) a “divide-and-conquer”
strategy, wherein smaller ML trees were estimated and subsequently combined using a
supertree approach. Additionally, we examined the impact of these methods on divergence
time estimation using a dataset that includes newly vetted fossil calibrations for the Avian Tree
of Life. Our findings highlight the advantages of recently developed fast tree search approaches
initiated with parsimony starting trees, which offer a reasonable compromise between

computational efficiency and phylogenetic accuracy, facilitating inference of macrophylogenies.

Keywords

Macrophylogeny, phylogenomics, supermatrix, supertree, ultraconserved elements, birds

Introduction

Completing the Tree of Life remains a significant bottleneck to addressing a wide range of
guestions in comparative biology (Cracraft and Donoghue 2004). Advances in sequencing
technologies (reviewed by McCormack et al. (2013)), computational methods (e.g., Kozlov et al.
2019), and user-friendly bioinformatic pipelines (e.g., Faircloth 2016) have made the production
and analysis of phylogenomic datasets involving hundreds of taxa increasingly routine.
However, scaling thesestechniques to datasets with thousands of loci and thousands of taxa
presents substantial logistical, computational, and methodological challenges (Delsuc et al.
2005; Philippe et al. 2011; Kapli et al. 2020). The construction of such “macrophylogenies” (Title
and Rabosky 2017) often relies on combining independently produced datasets, which

frequently have limited overlap and substantial missing data (Sanderson et al. 2010).
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Past attempts to infer macrophylogenies from independently produced datasets typically
used two general approaches: supermatrix and supertree methods. Supermatrix methods infer
phylogenies directly from orthologous loci, often compiled from multiple studies. However,
these methods are negatively affected by large amounts of missing data (Driskell et al. 2004;
Philippe et al. 2004; Goloboff et al. 2009; Hosner et al. 2016) and varying standards of data
quality (Philippe et al. 2011). Analyses of supermatrices are also vulnerable to common issues in
phylogenetic analyses, such as alignment errors (Ogden and Rosenberg 2006) and the inclusion
of non-orthologous sequences (Koonin 2005), which are often exacerbated in supermatrices
due to the heterogeneous nature of the data. Additionally, supermatrix methods face
escalating computational demands that increase nonlinearly (Bader et al. 2006) as both.the
width (number of sites) and height (humber of taxa) of the matrix expand (Delsuc et al»2005).
Some challenges, such as data quality and alighnment issues, can be mitigated.to an extent by
analyzing multiple datasets filtered to remove “noise” in different ways'andicomparing the
results (Kuhl et al. 2021). However, this approach is limited by the significant computational
costs of performing multiple analyses on large datasets. Supertree methods, by contrast,
generate phylogenies by combining existing tree topologies(Sanderson et al. 1998; Bininda-
Emonds 2004; Cotton and Wilkinson 2009). These methods are more computationally efficient
and can effectively incorporate trees built with heterogeneous data (Liu et al. 2001; Hinchliff et
al. 2015; Redelings and Holder 2017). However, most supertree methods cannot directly
estimate meaningful branch lengths. Despite the strengths and limitations of these methods,
rigorous comparisons of the ability ofisupermatrix and supertree methods to estimate
macrophylogenies using phylogenomic data remain rare. This gap largely reflects the limited
availability of large-scale genomic datasets for most taxonomic groups.

Class Aves (birds).is one taxonomic group with sufficient data to perform these types of
comparative analyses."As the most species-rich terrestrial vertebrate group, with 11,140 species
recognized (Gillet:al. 2023), birds have received extensive attention from phylogenetic
systematists (e.g., Hackett et al. 2008; Jetz et al. 2012; McCormack et al. 2013; Jarvis et al.
2014;Burleigh et al. 2015; Prum et al. 2015; Moyle et al. 2016; Reddy et al. 2017; Oliveros et al.

2019; Harvey et al. 2020; Stiller et al. 2024). Many relationships among birds are now strongly
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corroborated across studies, providing a reliable framework for evaluating the accuracy of
alternative approaches to estimate macrophylogenies. Another advantage of birds as a model
system is the partial standardization of phylogenomic data collection through the widespread
use of targeted enrichment of nuclear loci, such as ultraconserved elements (UCEs sensu
Faircloth et al. 2012). Over a quarter of all avian species now have UCE data available (see
below). These data have been used to resolve phylogenetic relationships among birds at both
deep (e.g., McCormack et al. 2013; Jarvis et al. 2014; Oliveros et al. 2019; Harvey et al. 2020)
and shallow (e.g., Smith et al. 2014; Winker et al. 2018) timescales. Most UCE studies of birds
target a large, uniform set of loci (uce-5k-probe-set, available from
https://github.com/faircloth-lab/uce-probe-sets; e.g., Sun et al. 2014). Some studies‘instead
use a smaller, nested subset of these loci (uce-2.5k-probe-set) that is sometimes combined with
exons commonly used in avian phylogenetics (e.g., Smith et al. 2014; Harvey et al. 2020).
Although these datasets exhibit some heterogeneity — stemming from the use-of different bait
sets and variability in the quality of input DNA templates — extensive overlap facilitates
integration into a single comprehensive dataset.

In this study, we use phylogenomic data from birds to -empirically evaluate the accuracy
and computational cost of alternative tree estimation . approaches. By assembling orthologous
UCE loci from the primary literature, we aim to bettér understand the factors influencing the
estimation of macrophylogenies. Specifically, we address the following questions: 1) Do
computationally efficient methods, such.as “fast” maximum likelihood (ML) estimation,
supertrees, or a divide-and-conquer strategy that combines many small trees using a supertree
method, recover similar numbeérsofexpected relationships corroborated in prior studies as
traditional ML methods? 2)\Does filtering datasets to reduce size and heterogeneity result in
topologies that recover fewer expected clades, and how does it affect compute time? 3) Does
the use of different,methods, which may bias branch length estimation and produce distinct
topologies, affect-divergence time estimation? By combining phylogenomic data from
independent'studies, we constructed a large-scale avian phylogeny, encompassing 2,756
ingroup taxa, 2 outgroup taxa and 5,121 loci. Our findings demonstrate that it is possible to

infer an accurate macrophylogeny with moderate computational cost. Moreover, the strategies
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identified as most effective in this study are likely applicable to other taxonomic groups with

sufficient phylogenomic data.

Materials and Methods

Assembling the phylogenomic data

We took multiple approaches to create a database of UCE loci from existing studies of birds. We
downloaded much of the data as individual alignments from 22 phylogenomic studies (Zhang et
al. 2014; Bryson et al. 2016; Hosner et al. 2016; Manthey et al. 2016; McCormack et al.-2016;
Burga et al. 2017; Campillo et al. 2018; Andermann et al. 2019; Andersen et al. 2019; Everson et
al. 2019; McCullough et al. 2019a; McCullough et al. 2019b; Oliveros et al. 2019; Sackton et al.
2019; White and Braun 2019; Harvey et al. 2020; Imfeld et al. 2020; Oliveros et\al. 2020; Salter
et al. 2020; Smith et al. 2023; Braun et al. 2024; for details, see Supplementary Table S1 &
Supplementary Information). We noticed that several studies had'overlapping or nested taxon
sampling. For example, Moyle et al. (2016) collected UCE data for. 104 songbird species, and
these data had all been included in a later study with breaderitaxon sampling (Oliveros et al.,
2019). Therefore, we used the dataset from Oliveros etal./(2019) for downstream analyses.

All studies targeted UCEs as the main genetic markers (some also targeted a small
number of legacy markers), and we preferentially’downloaded alignments with as little filtering
as possible (e.g., no missing data cut-0ffs).,.For studies where individual alignments were
unavailable, we downloaded concatenated matrices and partition files, which we converted
into alignments using the “split” function of AMAS (Borowiec 2016). Finally, we extracted UCEs
and 500 bp flanking sequences-from genome assemblies available at NCBI (that were not under
embargo; data downloaded on October 14, 2020) for species that were not represented by UCE
sequences, following Tutorial Il of PHYLUCE (Faircloth 2016) with the 5k probe set.

We processed the sequences to retain only one individual per species, according to the
IOC World-Bird List v13.1 (Gill et al. 2023). When multiple individuals of the same species were
presentiin our alignments or the same sample was used in different studies, we arbitrarily

selected the representative sample based on the alphabetical order of the studies
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(Supplementary Table S1). A few exceptions arose from taxonomic changes, occasionally
causing minor duplication or inclusion of multiple subspecies representing the same species
(see Data Availability). After verifying taxa, we performed sequence alignment with MAFFT
(Katoh and Standley 2013) using default settings and the --adjustdirection option to correct for
sequence orientation. Then, we filtered raw alignments with trimAl (Capella-Gutiérrez et al.
2009) using the “gappyout” method to remove sites based on the gap distribution within each
alignment. We refer to these alignments as the “full” dataset. We anticipated substantial
heterogeneity in the original datasets used to generate our supermatrix. See Supplementary

Information for how we evaluated data heterogeneity.

Filtering loci and subsetting datasets

To assess how different locus filtering schemes affect topology and computationalcost, we
created 27 filtered datasets by applying three filtering schemes serially to the full dataset (Fig.
1a). First, to control for missing sequence data by taxon, i.e., effects‘of‘partial sequences, or
“type 1I” missing data (sensu Hosner et al. 2016), we prepared two datasets where we removed
taxa from alignments when they were shorter than 50% or.75%, of the longest sequence in the
alignment for each locus (Fig. 1a, Step 1). Then we ran these two datasets, plus the full dataset,
through a second stage of filtering to control for gappyness by retaining alignment positions
with at least 90%, 70%, and 50% occupancy (Figy1a, Step Il). This step helps to address potential
issues with indel-induced alignment gaps‘(e'g.,'"Dwivedi and Gadagkar 2009) and reduce
heterogeneity that can occur at the.€nds of UCE alignments. Finally, for each of the nine
datasets that resulted, we performed a'third stage of filtering to control for taxon
completeness, where we retainedloci with at least 90% (n = 2,484), 70% (n = 1,932), and 50%
(n =1,380) of the total number of taxa (Fig. 1a, Step lll). The last step helps to control for the

Ill

effects of incomplete taxon sampling, i.e., “type |I” missing data (sensu Hosner et al. 2016). We
concatenated each of these datasets using PHYLUCE (Faircloth 2016) prior to phylogenetic
analysis.

For each filtered dataset and the full dataset, we averaged the individual-based summary
statistics (see Supplementary Information) across all taxa sampled in that dataset

(Supplementary Table S2). To visually inspect if taxa were clustering by study, we performed
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principal component analysis (PCA) using FactoMineR v1.34 (Lé et al. 2008) on individual-based
summary statistics and plotted the first two principal components using ggplot2 v3.3.5.9
(Wickham 2011) in R (R Core Team 2023). We also used IQ-TREE2 (Nguyen et al. 2015) to
compute locus-based summary statistics for each filtered dataset, i.e., number of loci, total
sites, parsimony informative sites, average gap and ambiguity across all loci, and loci with more
than 50% missing data (Supplementary Table S3). We used ComplexHeatmap (Gu 2022) to plot

the locus-based summary statistics for 27 filtered datasets (Fig. 1b).

Initial data exploration

- Concatenated analyses

We used the message passing interface (MPI) version of RAXML-NG v1.0.1 (Kozlov,et al. 2019)

to infer a ML phylogeny of the concatenated, full dataset (Table 1, baseline). Because this

dataset was large, we ran two concurrent ML analyses that each used 800 CPUs — both used the

GTR+R4 site rate substitution model, but one used parsimony to generate starting trees (MP
starting trees) while the other used random starting trees. Because of the compute hours
allocated to this project, we were only able to infer seven ML phylogenies using random
starting trees and five ML phylogenies using MP starting trees for the RAXML-NG analysis. We
selected the optimal tree as the one having the/highest log-likelihood across the 12 analyses.
We generated support values for the full dataset by performing ML analysis on 10 standard
bootstrap (Felsenstein 1985) replicates'with the GTR+R4 model. We evaluated the bootstrap
replicates for convergence using the -<bs-converge option. We found that these replicates had
converged, and we reconciled the “best” ML tree with the bootstrap replicates using RAXML-
NG.

To explore a faster method for ML tree estimation, we used the -fast option in IQ-TREE
v2.0.5 (Nguyen_ et al..2015) with the GTR+G site rate substitution model (Table 1, strategy 1).
We initially inferred phylogenies from the concatenated, full dataset along with six filtered
datasets that varied in numbers of loci, informative sites, and amounts of missing data. This
“fasttree” approach resembles FastTree (Price et al. 2010), although it estimates two starting

trees (using BIONJ (Gascuel 1997) and MP). It then optimizes the trees using rapid hill climbing
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including stochastic nearest neighbor interchanges (NNI), and increased tolerance on likelihood
values to speed up optimization, which has the potential to reduce accuracy (for detailed steps,
see Supplementary Information).

Following the inference of trees from concatenated datasets, we performed an initial
guality check of the inferred phylogenies by visual assessment of the relationships, and we
pruned Muscipipra vetula and Spheniscus mendiculus from trees using the drop.tip function in

ape v5.7-1 (Paradis and Schliep 2019) because these appeared in positions that were unlikely.

- Coalescent species tree estimation

For the full dataset and each of the six filtered datasets, we estimated individual gene trees
using IQ-TREE v2.1.3 (Minh et al. 2020) under the GTR+G model, and we combined the ML trees

to generate a species tree using ASTRAL v5.7.8 (Zhang et al. 2018) (Table 1, strategy 2).

- Building supertrees using existing phylogenomic trees

Supertree methods (Table 1, strategy 3) infer phylogenies from existing-trees, and we identified
53 trees from 46 phylogenomic studies (McCormack et al. 2013;Jarvis et al. 2014; Lamichhaney
et al. 2015; Nater et al. 2015; Prum et al. 2015; Bryson et al.'2016; Hosner et al. 2016; Manthey
et al. 2016; Ottenburghs et al. 2016; Zarza et al. 2016;\Burga et al. 2017; Reddy et al. 2017;
Wang et al. 2017; White et al. 2017; Yonezawa_ €t al;. 2017; Andersen et al. 2018; Bruxaux et al.
2018; Campillo et al. 2018; Chen et al. 2018; kerreira et al. 2018; Musher and Cracraft 2018;
Younger et al. 2018; Andermann et al..2019; Andersen et al. 2019; Everson et al. 2019;
McCullough et al. 2019a; McCullough'et al. 2019b; Oliveros et al. 2019; Sackton et al. 2019;
White and Braun 2019; Harvey et al. 2020; Imfeld et al. 2020; Oliveros et al. 2020; Salter et al.
2020; Smith et al. 2020; Vianna_ et al. 2020; Catanach et al. 2021; Kirchman et al. 2021; Oliveros
et al. 2021; McCullough.et al. 2022; Vinay et al. 2022; Wang et al. 2022; Smith et al. 2023; Zhao
et al. 2023; Braun et-al.2024; for details, see Supplementary Table S4) which have overlapping
taxa with those included in the supermatrix datasets. After obtaining tree files representing all
studies’(see Supplementary Information), we reconciled the taxon names to match those in I0C
v13.1'and pruned duplicate tips that represented the same species within a tree using the

drop.tip function in ape.
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Because the phylogenomic trees we downloaded included few taxa that overlapped
among studies, we integrated them using three types of backbone trees: one from Burleigh et
al. (2015) that we refer to as the “Burleigh backbone”, a second from Jetz et al. (2012) that we
refer to as the “Jetz backbone”, and a “taxonomic” backbone (family-level or genus-level). See
Supplementary Information for how we generated the Burleigh and Jetz backbones. We
created the family-level taxonomic backbone based on taxon names in IOC v13.1 to: group
individual taxa by family, cluster taxa from same family into a polytomy, cluster families from
the same order into a polytomy, and cluster orders into infraclasses Palaeognathae,
Galloanserae, and Neoaves. Finally, we enforced a tree topology to reflect a well-established
topology: (outgroup,(Palaeognathae,(Galloanserae,Neoaves))). We constructed the genus-level
taxonomic backbone similarly by clustering taxa from the same genus into a polytomy,then
clustering by family, order, and infraclass and enforcing the same topology among infraclasses.

We used matrix representation with parsimony (MRP) (Baum 1992; Ragan 1992) to
generate supertrees following the pipeline described in Kimball et al. (2019). Since the
supertree method can suffer from source tree incongruence (Bininda-Emonds et al. 2002), we
employed a user-guided weighting scheme to address topological conflicts among source trees.
Specifically, we assigned different weights to input trées based on the amount of data used to
infer them (Supplementary Table S4) by including from,one (low weight) to eight (high weight)
copies in the supertree matrix. For examplesitrees,based on whole-genome sequencing data,
such as the Jarvis TENT tree (Jarvis et al£.2014),’'were given a weight of eight and included in the
supertree matrix eight times. We typically weighted UCE trees as four. However, if a study
included two UCE trees estimated by different approaches (e.g., methods of tree estimation or
filtering strategies) but using completely or largely overlapping data, we assigned each tree a
weight of two. We assigned two additional trees (Reddy et al. 2017; Yonezawa et al. 2017) a
weight of two because'they were based on a large number of “legacy markers” (Kimball et al.
2009) extracted-from genome assemblies. Finally, we assigned a weight of one to all backbone
trees.

Afterdetermining the weighting scheme, we created three supertree matrices: 1)

weighted trees with the Burleigh and Jetz backbones; 2) weighted trees with Burleigh, Jetz, and
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family-level taxonomic backbones; and 3) weighted trees with Burleigh, Jetz, and genus-level
taxonomic backbones. Then we used CLANN (Creevey and Mclnerney 2005) to convert the
input tree matrix to a binary (MRP) representation and generated supertrees using PAUP* v4.0
(Swofford 2003). We conducted the searches using the parsimony ratchet (Nixon 1999) as
described in Kimball et al. (2019), which used code available from
https://github.com/ebraun68/ratchblock to generate PAUP blocks that ran five tree searches
with different upweighting scores. Each tree search consisted of 100 replicates and produced a
strict consensus tree from these replicates after the tree search concluded. For each of the
three matrices, we selected the resulting supertree as the one from the five searches that had
the best parsimony score. Then we pruned the resulting three supertrees to include only.the
taxa present in the full (supermatrix) dataset, which resulted in 2,751 taxa (seven taxa in our

supermatrix were not included in published phylogenies).

- Building supertrees using a divide-and-conquer approach

Because supermatrix methods can be computationally intensive for large datasets, we also
tested a divide-and-conquer approach that combined supermatrix-and supertree methods by
dividing the supermatrix into subsets of taxa, inferringtrees from each subset using
supermatrix methods, then integrating the resulting subset trees with supertree methods
(Table 1, strategy 4). To begin the process, we'designed three subsetting schemes that differed
in the likely number of overlapping taxa shared between them: random subsets, partially
stratified subsets, and fully stratified’subsets.

We created 15 random subsets. by’ randomly drawing (with replacement) 150 taxa from
the total list of taxa (2,760).in the full dataset.

We created the partially'stratified subsets by dividing all taxa in the full dataset into six
major groups that were recovered across many studies (Supplementary Figure S1). Then, we
randomly selected 7.5%, 3.1%, 7.8%, 6.8%, 7.4%, and 8.0% of the taxa within each group largely
based on.its,size while avoiding oversampling suboscines, which produced a subset of 150 taxa.
We repeated this selection process without replacement to create a total of 10 partially

stratified subsets.
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We created the fully stratified subsets by dividing all taxa in the full dataset into 25 groups
(Supplementary Figure S2) that were based on taxonomy to ensure all taxa were represented at
least once across the subsets and were included in trees with congeners (so sister relationships
could hopefully be resolved). We set the number of taxa included in each subset under 200 to
maximize computational efficiency given our resources (see Supplementary information).
Because supertree analyses require overlapping taxa, we then manually selected “linker taxa”
from outside each group and included them in the group membership. Preliminary analyses
showed that using identical linker taxa across fully stratified subsets placed the linker taxa in
unexpected positions in the resulting tree. Therefore, we used distinct linker taxa for each
subset, which resolved this issue.

We created a total of 50 subsets across all schemes. We extracted subset.alignments
from the aligned, concatenated, full dataset. Then, we used IQ-TREE v2.1.3 (Minh et al. 2020) to
infer the “best” ML phylogenies and generate 1,000 ultrafast bootstrapreplicates for each
subset using the GTR+R4 model.

We followed the same weighted-tree search approach described above to infer a set of
supertrees representing all taxa from the 50 “best” ML subtrees. Specifically, we created five
supertree matrices using: 1) the 50 best ML subtreesiwherne each tree was given a weight (w) of
one (w =1); 2) the 50 best ML subtrees (w = 4) and.the,family-level backbone tree (w = 1); 3)
the 50 best ML subtrees (w = 2) and the family-level backbone tree (w = 1); 4) the 50 best ML
subtrees (w = 4) and the genus-level backbone tree (w = 1); and 5) the 50 best ML subtrees (w =
2) and the genus-level backbone treeyw = 1).

We also built 1,000 MRP'matrices (each with 50 trees) from the bootstrap replicates by
sampling and combining replicates from the subsets in the order they were generated:
bootstrap replicate trée one from all 50 subsets combined to form MRP matrix one, bootstrap
replicate tree two fromyall 50 subsets combined to form MRP matrix two, et cetera. Then we
performed thetree search process described above for each MRP matrix to produce a set of
1,000 phylogenomic supertrees that we summarized to a 50% majority rule consensus using
SumTrees-(Sukumaran and Holder 2010). We pruned the six supertrees generated from the

steps-above to include only the taxa present in the full (supermatrix) dataset.
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Analyzing tree distances

To visually represent differences between the various trees we inferred, we rooted trees on the
crocodilian outgroup and used ete3 (Huerta-Cepas et al. 2016) to calculate pairwise normalized
Robinson-Foulds distances between the two trees inferred from the full dataset, the six trees
inferred from the filtered datasets, the three trees inferred from the supertree analyses, and
the six trees inferred using the divide-and-conquer approach (Table 1). ASTRAL species trees
were not included (see Results). We used the write.nexus.dist function in phangorn v2.11.1
(Schliep 2011) to create a NEXUS block of the pairwise Robinson-Foulds distances, and we used
PAUP* v4.0 (Swofford 2003) to infer a neighbor-joining (NJ) “tree-of-trees” that we rooted at

the midpoint.

Testing for clade monophyly

Sangster et al. (2022) and earlier work (Chen and Field 2020; Queiroz etal»2020; Sangster and
Mayr 2021) highlighted several clades near the base of the avian tree thatare very likely to
reflect the true species tree. Modern taxonomies, such as 10C, eBird/Clements (Clements et al.
2023), and Howard & Moore (Dickinson and Christidis 2014),.now'circumscribe orders, families,
and genera in ways that largely align with recent phylogeneticinsights. However, no current
taxonomy is without limitations. Some families and genera continue to be refined as more
information becomes available. Although there are almost certainly some named taxa that do
not represent clades in the true species tfee)the majority of named groups are likely to be
expected clades. We compared how(reliably the different tree inference methods resolved
these expected clades across the.avian’phylogeny. These include orders, families, and genera
recognized by I0C v13.1, as wellas33 high-level clades (e.g., superorder, infraclass). We
generally assumed that a method was more reliable when it recovered a larger number of these
groups as monophyletic (€.g., Portik and Wiens 2021). To perform these analyses, we first
excluded clades that'were only represented by a single species. Then we used the
AssessMoanophyly function in MonoPhy (Schwery and O’Meara 2016) to calculate how many of
the.410.evaluated genera, 138 evaluated families, 40 evaluated orders, and 33 evaluated high-

level.clades were not resolved as monophyletic.
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Summarizing compute time

We summarized and compared the compute time required for the tree inferences described
above. To increase our computational capacity, analyses were run across several different
computing systems: HPC@LSU (RAXML-NG analysis; https://www.hpc.Isu.edu/), AMNH Huxley
HPC (initial fasttree analyses and ASTRAL analyses;
https://www.amnh.org/research/computational-sciences), and UF HiPerGator (supertree and
divide-and-conquer analyses; https://www.rc.ufl.edu/about/hipergator/). For each analysis, we
tallied the CPU hours spent for tree searches (including bootstrap replicate searches if
applicable) and optimization, and we collected the total cluster utilization for each SLURM joh.
For the RAXML-NG analysis of the full dataset, we combined the CPU time for the random-and
the MP starting trees. For the divide-and-conquer analyses, we summed the CPU hours spent
for tree search across 50 subsets. Because the supertree component for the divide-and-conquer
analyses used very little CPU time compared to the subset concatenation.analysis, we added it
directly to the total CPU time spent (for the bootstrap trees, time for 1,000 runs were added).
For the regular supertree analyses, we presented the PAUP trée search time and added time for
MRP matrix construction to the total CPU hours spent. To account for variations in CPU
hardware performance across the three computing systems, we used the base and turbo clock
speed to calculate the theoretical minimum and-maximum giga floating-point operations per
second (GFLOPS; 1 GFLOPS = 10° FLOPS) per'core (Supplementary Table S5). This metric was
then used to evaluate the relative performance of each computing system and to adjust the

CPU cost accordingly (adjusted CPU time = CPU hours * GFLOPS).

Tests on two filtered datasets

Generating the distance matrix and BIONJ starting tree in the initial fasttree analyses was time-
consuming for our'datasets. However, the likelihood of the resulting fasttree was only slightly
improved comparedito the MP starting tree, and the MP starting tree was always much better
than the-BIONJ tree (Supplementary Table S6). To improve fasttree search and optimization, we
examined the role of the starting tree using two filtered datasets (filterl and filter3). We chose
these filter sets due to their contrasting patterns of expected clade recovery in initial

exploration: filterl performed well deeper in the tree but poorly at the tips, whereas filter3

GZ0Z 18qWBAON tZ Uo Jasn AlisiaAlun e)els euelsino Aq 622/ 1 £8/0801eAs/01qsAs/S60 1 0 L/10p/8[o1e-80UBAPE/0IqSAS/WO02 dNO"olWapEo.//:Sd)y WO} PapEojuMO(



413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

428

429
430
431
432
433
434
435
436
437
438
439
440

showed the opposite pattern. Fasttree searches normally use two starting trees (MP and
BIONJ), however, users can supply their own starting tree to bypass the default starting tree
estimation process. We performed a total of 24 additional tree searches for each dataset with
different starting trees (see Supplementary Information). We evaluated the log likelihoods of
the starting tree and optimal tree and assessed expected clade recovery for the final ML tree in
each analysis (Supplementary Table S7).

Based on the tests using filterl and filter3, we found that searches initiated with BIONJ
and MP starting trees required a large amount of time, had a much lower likelihood, and
resulted in worse expected clade recovery than the initial exploration (Supplementary Figure.S3
and Supplementary Table S7). In contrast, fasttrees built using only MP starting trees‘derived
from the same filtered dataset used for the ML search consistently had much better likelihoods
than those derived from other filtered datasets. These results suggest a straightforward
method to improve the speed and reproducibility of fasttree searches: avoid.génerating the
BIONJ tree and instead conduct multiple searches using MP starting trees generated from the

same dataset used for the fasttree search.

New fasttree method with MP starting trees

We used Parsimonator v1.0.2 (https://github.com/stamatak/Parsimonator-1.0.2) to estimate
four MP starting trees (parsA, parsB, parsC, andwarsD; different random number seeds for each
search) for each of the full and 27 filtered datasets. Each MP starting tree was used to run a
fasttree analysis in IQ-TREE v2.2.2 (Nguyen,et al. 2015) with parsA and parsB using the GTR+G
model and parsC and parsD using the FreeRates model (GTR+R4). Two filtered datasets were
identical to each other (indv75 sites50 |oci90 and indv75_sites70 loci90), therefore we
performed only one set of analyses for these two datasets. This resulted in a total of 108 new
fasttrees, four for each dataset (Table 2). We evaluated their performance in expected clade
recovery and summarized the total CPU time spent. We z-transformed each locus-based
summary.statistic across all filtered datasets and plotted using ComplexHeatmap with
hierarchical clustering (Supplementary Figure S4). From each cluster, we selected a

representative dataset that performed best in recovering expected clades. We only present the
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best fasttree for these representative datasets in the main text (see complete results in

Supplementary Table S8).

Hybrid approaches

We tested whether fasttrees could improve the supertree and divide-and-conquer methods
when used as backbone trees. Unlike the Jetz+Burleigh backbones used initially, our fasttrees
included all taxa in the analyses, potentially providing a better backbone to compensate for
limited overlap among source trees. Additionally, because our fasttrees were estimated from
phylogenomic data, they may offer a more accurate representation of relationships, potentially
reducing the need for taxonomic backbones. We referred to these new approaches as'the
“hybrid supertree approach” and “hybrid divide-and-conquer approach” (Table 2).

We used the two best new fasttrees (based on expected clade recovery).and seven initial
fasttrees as the backbone tree in supertree and divide-and-conquer analyses (Table 2). For the
hybrid supertree approach, we conducted two sets of nine analyses{with=or without a family-
level taxonomic backbone), each analysis with a different fasttree ‘as'the backbone. Each
backbone was given a weight of one, and source trees were.givendifferent weights based on
the amount of data used to infer them, as described above. For the hybrid divide-and-conquer
approach, we also ran two sets of analyses, each with niné trees estimated: 1) using only a
fasttree as the backbone with the 50 best ML:subtrees and the fasttree backbone each given a
weight of one; and 2) using a fasttree backbene and a genus-level backbone with the 50 best
ML subtrees given a weight of two and;the,backbones given a weight of one. We then followed
the same steps described above to build a binary MRP tree matrix in CLANN and generate
supertrees using PAUP*. Similarly,)we evaluated the performance in expected clade recovery
for final output trees (Supplementary Table S9). When summarizing the total CPU time spent,
we added in the compute‘time for generating each MP starting tree and the fasttree. All new

fasttrees, MP starting trees, and hybrid approaches were run on UF HiPerGator HPC.

Molecular dating

We applied a total of 43 fossil calibrations for node-dating analyses (Supplementary Table S10)

following best practices proposed by Parham et al. (2012), and we assigned minimum and
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maximum possible ages to each calibrated node in our phylogeny. Additional information
regarding the fossils selected to calibrate divergence time analyses is presented in the
Supplementary Information.

Then, due to the size of the resulting trees, we used TreePL (Smith and O’Meara 2012) to
estimate divergence times for the (1) RAXML-NG tree inferred from the concatenated, full
dataset; (2) two fasttrees using new fasttree methods based on the full dataset and the filtered
dataset indiv0_sites50_loci50; 3) two supertrees (one from initial exploration and one from the
hybrid approach); and 4) two divide-and-conquer trees (one from initial exploration and one
from the hybrid approach). For the four supertrees and divide-and-conquer trees, we used 1Q-
TREE2 v.2.2.2 (Nguyen et al. 2015) to optimize the tree branch lengths (--tree-fix) under/both
GTR+G and GTR+R4 model using the filtered dataset with the smallest amount of missing data
(indv0_sites90 loci90). TreePL allows for varying rates across branches but penalizes rate
differences over the tree with a rate smoothing parameter, so we identifiedithe optimal rate
smoothing parameter through cross-validation that tested 10 values (start = 1e-07; stop =
10,000). We also used the “prime” option to identify the best optimization parameters and the
“thorough” option to allow the program to iterate until convergence.

We extracted crown ages only for groups that were monophyletic across seven time trees
and compared the age of each group across trees."We also compared the time estimates for 12
major groups (that have been consistently résolved across studies and that represent both
ancient and recently diverged clades asiwell as‘both fast- and slow-evolving clades) to those in
other studies (Claramunt and Cracraft2015; Prum et al. 2015; Kimball et al. 2019; Kuhl et al.
2021; Brocklehurst and Field 2024;"Claramunt et al. 2024; Stiller et al. 2024; Wu et al. 2024a).
Divergences estimated under GTR+G and GTR+R4 models were very similar (see Data
Availability), thus onlyresults from GTR+R4 model were used for presentation. We also

computed relative divergence time for these clades by scaling the divergences to Neognathae.
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Results

Taxon sampling

Our UCE data matrix contained DNA sequence alignments for 5,121 target captured loci, with
an average length of 665 base pairs (bp) and a total of 2,047,980 parsimony informative sites.
The full dataset contained 2,758 tips (including two crocodilian outgroups); members of all 44
extant bird orders and one extinct order (Dinornithiformes); 250 of 253 (98.8%) extant bird

families and one extinct family (Emeidae); 1,081 genera; and 2,747 unique species.

Dataset characteristics and filtering

Data heterogeneity was evident in descriptive statistics for individual taxa. For instancejtaxa
showed considerable variation in locus count, sequence length, and individualrbased-parsimony
informative sites both within and between studies (Supplementary Figure(S5). PCA of these
summary statistics revealed distinct clusters corresponding to their source datasets
(Supplementary Figure S6). As anticipated, more stringent filtering'sechemes substantially
increased homogeneity among studies and reduced the amount'ef missing data. However,

these improvements reduced the number of informative.sites,(Supplementary Figure S5).

Baseline phylogeny
The RAXML-NG tree of the full concatenated\dataset recovered all 33 high-level clades
identified by Sangster et al. (2022), all 40 evaluated orders (excluding monotypic or single-
sampled orders), all but two of the 138 evaluated families, and all but 38 of the 410 evaluated
genera (Fig. 2; Supplementary Figure'S7).

Although the RAXML-NG tree appeared to provide an accurate estimate of avian
phylogeny based on expected clade recovery, generating this tree required significant
computational resources — approximately 428,000 CPU hours for the primary search and

additional 323;000°CPU hours for a limited number of bootstrap analyses.

Initial exploration

We explored four alternative approaches (Table 1) that were more computationally efficient

than standard ML: (1) implementing a fast ML estimation approach, (2) estimating individual
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gene trees and combining them into a species tree, (3) combining source trees into a supertree,
and (4) using a divide-and-conquer strategy in which trees were estimated from data subsets
and then combined into a supertree. The primary goal of these analyses was to determine
whether any of these computationally efficient methods could produce trees as accurate as the
RAXML-NG tree.

The fasttree (Table 1, strategy 1) estimated from the full dataset did not perform as well
as either the RAXML-NG tree or the best trees from other approaches (Fig. 3). Filtering
appeared to improve the performance of fasttree analyses, with the best results based on the
expected clade recovery criterion observed in trees inferred from the least aggressively filtered
datasets (filterl and filter2). By contrast, the most aggressively filtered datasets (filter5 and
filter6) performed poorly with clade recovery similar to that of the full dataset fasttree,
suggesting diminishing returns with overly stringent filtering.

The ASTRAL species trees (Table 1, strategy 2) recovered substantially fewer expected
clades than either the RAXML-NG tree or the fasttrees, regardless of the filtering procedure (or
lack thereof) used to generate the alignments for gene tree estimation. The total number of
unresolved groups ranged from 144 to 207 and adjusted CPU time (CPU hours * GFLOPS)
ranged from 29,549 to 1,977,494 (Supplementary Table S11).

For the supertree analysis (Table 1; strategy 3); the supertree constructed without
taxonomic backbones (S1) performed poorly.in recovering expected clades (Fig. 3). In contrast,
the two supertrees with taxonomic backbones (S2 & S3) performed as well as, or slightly better
than, the RAXML-NG tree in terms.of'expected clade recovery while still requiring minimal
compute time (Fig. 3).

The divide-and-conquer approach (Table 1, strategy 4) without taxonomic backbones
outperformed the supertree without backbones in recovering expected clades (Fig. 3).
However, performance;comparable to the RAXML-NG tree was achieved only when a genus
backbone wassincluded. Despite requiring the estimation of input trees from the supermatrix,
this method was much more computationally efficient than the RAXML-NG analysis (Fig. 3).

The-two divide-and-conquer trees using the genus backbone (T5 & T6) performed well

overall but exhibited polytomies within heavily sampled passerine families, such as Tyrannidae
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and Thamnophilidae, as well as among some oscine families. Notably, these polytomies were
not observed in Oliveros et al. (2019) and Harvey et al. (2020), which were the sources of most
of the passerine data. The number of polytomies decreased when the weight of the source
trees relative to the genus backbone was reduced (lower in T6 [2:1] versus higher in T5 [4:1];
see Supplementary Information for details on comparing polytomies). However, this
adjustment did not affect the recovery of expected clades.

The tree-of-trees (Fig. 3) indicated that the method of inference (supermatrix, supertree,
or divide-and-conquer) strongly influenced topological similarity. Notably, supertree and divide-
and-conquer methods formed distinct clusters. For the supertrees, this clustering may reflect
biases introduced by relationships within the source trees, which differed from those'inferred
using other methods. Similarly, the clustering of divide-and-conquer analyses likely stems from
the use of the same underlying subset trees (or their bootstrap consensus), which may have
contributed unique relationships within the data subsets. By contrast, the fasttrees did not
form a single cluster, and branch lengths in the NJ tree indicated greater variation among these
analyses compared to the other methods. This increased variation is expected, given that the

fasttree datasets differed in content due to filtering.

Fasttrees with MP starting trees

We conducted four searches on the full datasét'and €ach of the 27 filtered datasets. Analysis of
expected clade recovery for all new fasttréees (Supplementary Table S8) revealed that one
fasttree from the full dataset (using.an MP;starting tree with the GTR+R4 model in replicate
search D, i.e., FreeRates parsD).matched the RAXML-NG tree in both the number and identity of
expected clades (Figs. 4 & 5). This best full dataset fasttree closely approximated the RAXML-NG
tree in tree space (Fig. 4), but it was far more computationally efficient (69- to 178-fold
difference in the adjusted CPU costs between the two analyses, depending on the dynamic CPU
speed).

We.compared the performance of filtered datasets to evaluate the effects of different
filtering strategies. At the genus level, datasets filtered with indv0 and loci50 (keeping all taxa
within specific loci and retaining loci sampled in 250% of taxa) achieved the best expected clade

recovery. For high-level clades, datasets filtered with sites50 (removing alignment columns
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where 250% of taxa were gaps or missing) performed best. In contrast, more aggressive
filtering approaches, such as loci90 (retaining loci sampled in 290% of taxa) and indv75 (keeping
taxa with 275% of sequence completeness), consistently resulted in poorer clade recovery. As
expected, filtering reduced the number of sites and CPU time was positively correlated with the
size of the supermatrix across all fasttree analyses (R? = 0.8; Supplementary Figure S8). While
we observed no consistent pattern in clade recovery between trees estimated with FreeRates

and GAMMA models, GAMMA models generally required less compute time.

Hybrid supertrees and hybrid divide-and-conquer trees

Using a fasttree backbone in the hybrid supertree approach led to poor clade recovery, with
some iterations performing worse than our initial analyses using the Jetz+Burleigh backbones
(Fig. 4 and Supplementary Table S9). However, as in the initial analyses, adding astaxonomic
backbone greatly improved performance, with several hybrid supertree_ analyses recovering
more expected clades than the RAXML-NG tree. Despite these improvements, a better
backbone did not eliminate the novel relationships introduced in thesupertree analyses. Hybrid
supertrees still produced topologies that were the most divergent-from those inferred by
RAXML-NG, our best new fasttrees, or our best hybrid.divide-and-conquer trees (Fig. 4).

The hybrid divide-and-conquer trees were similarte the RAXML-NG tree (Fig. 4).
However, even when using a fasttree with strong expected taxa recovery (e.g., the fasttree
fulldata parsD), these trees recovered fewernexpected clades than the RAXML-NG analysis.
While the inclusion of a taxonomic backboné provided some improvement, none of the hybrid
divide-and-conquer trees outperformed the best hybrid supertrees (Fig. 4). Additionally, some
polytomies observed in the initial analyses persisted, even with the inclusion of both the

fasttree and a taxonomic backbone.

Divergence time estimation

Divergence time estimates for key nodes were generally similar across our seven trees (Fig. 7),
despite being’estimated using different methods and datasets. Lower-level ranks, e.g., genus, in
general showed higher variation in crown ages across trees when compared to higher-level

ranks (Fig. 7a). However, the number of outliers (points that fell outside 1.5x the interquartile
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range for all clades of the same rank) was smaller as a proportion of the total clades considered
in lower-level ranks. Recent studies also show broadly similar relative divergence times (to
Neognathae) for comparable groups (Fig. 7b), although there were differences among time

trees (especially for published studies) in the absolute divergence times (Fig. 7c).

Discussion

Baseline phylogeny and expected clade recovery

The RAXML-NG tree provided a reliable estimate of the bird phylogeny, and most cases of non-
monophyly at lower taxonomic levels matched results from recently published phylogenemic
studies (e.g., Harvey et al. 2020; Smith et al. 2023). Some instances of non-monophyly likely
reflected artifacts, such as limited taxon sampling or insufficient sequence.dataj particularly
from historical museum specimens, while others appear to reflect thetrue phylogenetic
relationships of genera or families for which formal taxonomic revision-is pending (e.g.,
Tyranneutes nested in Neopelma (Leite et al. 2021), Antilophia in‘Chiroxiphia (Zhao et al. 2023),
and Tityridae divided into Tityridae sensu stricto, Onychorhynchidae, and Oxyruncidae (Oliveros
et al. 2019)). However, the RAXML-NG analysis requiredisubstantial computational resources,
which was expected given the long-recognized challenges of large tree searches under the
likelihood criterion (reviewed by Yang and'Rannala 2012). The recently introduced Early
Stopping version of RAXML-NG, which offers’up to a 5-fold speedup for large DNA datasets and
up to 10-fold speedup when using MP starting trees (Togkousidis et al. 2025), may reduce some
of these computational demands. Conversely, incorporating MP starting trees to fasttree
approaches significantly reduces the computational burden while producing trees that appear
to be of approximately equal quality — providing a promising alternative for scaling future

phylogenetic inferences including thousands of loci to even larger numbers of tips (5,000+).

Fasttree approaches

Asnoted above, we evaluated alternative analytical approaches that might offer similar or even

greater accuracy while requiring fewer computational resources than RAXML-NG. Our initial
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exploration of computationally efficient methods found that fasttrees, while not as accurate as
the RAXML-NG tree or the best-performing supertrees and divide-and-conquer trees, still
demonstrated relatively good recovery of expected clades (Fig. 3). Previous studies found that
trimming the alighments did not improve expected clade recovery (Tan et al. 2015; Portik and
Wiens 2021). However, this was not the case for our initial fasttree analyses, since the fasttree
based on the full dataset exhibited poorer clade recovery than most of the filtered datasets.
This result suggests that the heterogeneity of the full dataset may interfere with fasttree
searches, unlike the RAXML-NG analysis, which appeared more robust to heterogeneity.

We improved the fasttree search and optimization process by conducting four replicate
searches, each initiated using an MP starting tree. This modification resulted in a best\full
dataset fasttree that achieved phylogenetic accuracy comparable to the RAXML-NG tree, yet
with a substantially reduced computational burden (Fig. 4). Although the two.trees differed in
the arrangement of Otidimorphae, Columbimorphae, and Opisthocomiformes{Supplementary
Figure S9), the relationships among high-level clades at the base of Neeaves remain a
particularly challenging phylogenetic problem (reviewed by Braun €t al. 2019), with no
consensus achieved to date (cf. Stiller et al. 2024; Wu et al. 2024a).

In contrast to our attempts to improve search efficiency, dataset filtering approaches
yielded mixed results. Unlike our initial analyses;filtering to remove missing data did not
enhance new fasttree performance in recovéering'expected clades, likely because filtered
datasets also had fewer parsimony infofmative sites (Fig. 6). This result agrees with the findings
in Tan et al. (2015) and Portik and Wiens (2021) that filtering did not increase expected clades
recovery. Additionally, we found that'site filtering had a greater impact on high-level clade
recovery, whereas locus and.individual filtering more strongly influenced resolution of expected
genera. The most effective filtering strategy likely depends on the taxonomic level of interest,
and a significant benefit-of the new fasttree approach is that testing various filtering strategies
and models-is'more feasible due to the significantly reduced compute time. This efficiency also
makes it possible to incorporate multiple replicates of tree search to account for stochasticity.
As phylogenomic datasets continue to grow in size, further advancements in computational

efficiency for tree estimation will remain essential.
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Species tree methods on heterogeneous datasets

Results from the ASTRAL analyses are consistent with previous studies, which have shown that
poor sequence recovery and missing data can bias gene tree summary methods (Liu et al. 2010;
Springer and Gatesy 2014; Hosner et al. 2016; Xi et al. 2016; Zhao et al. 2025). One contributing
factor is the distribution of informative sites in UCE alignments, which are disproportionately
located near the ends of the alignments (Faircloth et al. 2012). These regions may be
underrepresented when sequence recovery is poor, particularly in lower-quality samples such
as those derived from historical museum specimens. Consequently, taxa with poor sequence
recovery may be misplaced in estimated gene trees or excluded from certain gene trees
altogether, leading to inaccuracies in the ASTRAL tree. Improving ASTRAL trees would'entail
excluding lower-quality samples and result in a tree with many fewer tips. Overall, ASTRAL was
not an accurate method for estimating macrophylogeny with this type of heterogeneous UCE
data, even when using the more homogenous filtered subsets. Additionally,”ASTRAL was less

computationally efficient than many of the other methods tested (Supplementary Table S11).

Supertree and divide-and-conquer approaches

Despite being computationally efficient, the supertrees contained novel nodes that
contradicted all input trees, potentially due to issdes.of hidden support (e.g., Gatesy et al. 2004;
Wilkinson et al. 2005). While signals from thelinput phylogenomic trees should dominate the
supertree topology due to their higher weightsrelative to the backbones, novel relationships
likely arose from topological incompatibilities or asymmetric taxon sampling in the published
phylogenomic trees used as input..These issues appeared to be intrinsic to the structures of the
input trees (see examples in Supplementary Information). Consequently, hybrid supertrees still
produced topologies that were the most divergent from other trees (Fig. 4). This outcome may
be explained by thewreliance of supertree methods on input trees generated using different
analytical approaches by different investigators, as we combined trees from 46 distinct
phylogenomic studies. Although the compute time required for supertree analyses was minimal
(Fig.3),this/does not include the time needed to locate and code the source trees for analysis.
Overall, we were able to produce supertrees that provided reasonably accurate

representations of the Avian Tree of Life, but the methods were not straightforward. Consistent
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with previous studies, we found that incorporating backbones was critical for improving
taxonomic overlap (Redelings and Holder 2017; Kimball et al. 2019; McTavish et al. 2024). An
alternative or complementary approach involves pruning problematic taxa from the source
trees (Bininda-Emonds et al. 2002) or upweighting more accurate source trees (Bininda-Emonds
and Sanderson 2001). While these strategies can improve phylogenetic accuracy, they require
prior knowledge and subjective decisions about phylogenetic relationships, which may not
always be feasible or unbiased.

Compared to typical supertree approaches, the divide-and-conquer method has
advantages, as the individual trees integrated using supertree techniques are generated.dnder
consistent programs, parameter settings, and computing platforms. This approach establishes a
direct link between sequence data and supertree estimation, addressing the data-dissociation
problem inherent in traditional supertree methods (e.g., Moore et al. 2006)."However, all our
divide-and-conquer trees, even with the taxonomic backbones, included-unresolved nodes
which were particularly evident in species-rich clades where limited overlap in taxon sampling
across subsets may have contributed to the increased numberiof polytomies. This suggests that
the 50 subsets used for the divide-and-conquer analyses weresinsufficient and that additional
subsets may be required to improve resolution, albeit at the cost of increased compute time.

Although the source trees differed between'the supertree and divide-and-conquer
analyses, both used the same approach to estimate the final tree and faced similar limitations.
In both cases, the best results were achieved using taxonomic backbones. While standardized
taxonomic backbones are available for'well-studied groups like birds, their absence in many
other taxonomic groups limits the'broader applicability of these methods. Even where these
backbones are available, vastly different ranks may be used for clades of similar ages and
species numbers in different parts of the Tree of Life. For example, there are 14,348 named ant
species (Bolton 2025)and the ant crown group has an age of approximately 127 Ma (Borowiec
et al. 2025),/making the ants slightly more species-rich and older than birds. However, ants are
classified as aifamily (Formicidae), rather than a class like birds, and this limits the number of
taxonomicranks that can be used for a supertree backbone or in assessment of clade recovery.

Overall, these issues may limit the utility of supertree methods.
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Identifying an appropriate weighting scheme for supertree methods is another challenge.
The approach we used for our MRP gave a low weight for the backbone and assigned the
largest weights to source trees based on the largest datasets, but it was ultimately ad hoc.
Fortunately, the computational efficiency of supertree analyses allows for testing alternative
weighting schemes (e.g., Moore et al. 2006; Baker et al. 2009; Nyakatura and Bininda-Emonds
2012) to evaluate their impact on resolution — provided robust criteria, such as expected clade
recovery, are available for comparison. Finally, neither method inherently supports branch
length estimation. Various approaches can assign branch lengths to supertrees, with or without
molecular data (e.g., Purvis 1995; Bininda-Emonds et al. 1999; Torices 2010; Kimball et ak
2019). In our study, branch length-optimized supertrees and divide-and-conquer trees,yielded
divergence time estimates that were similar to those from the concatenated trees, suggesting

this limitation may not be critical for most studies.

Divergence time estimation

The timing of events in the avian phylogeny has been a topic of substantial debate. Some
studies support an upper Cretaceous ancient origin for most highslevel clades in Neoaves
(Pacheco et al. 2011; Mitchell et al. 2015; Wu et al. 20243; Wu'et al. 2024b), while others
suggest these lineages originated much closer to the,Cretaceous-Paleogene (K-Pg) mass
extinction event (~66 Ma) (Jarvis et al. 2014; Claramunt and Cracraft 2015; Prum et al. 2015;
Kimball et al. 2019; Brocklehurst and Field'2024; Claramunt et al. 2024; Stiller et al. 2024).
Despite these differences, all studies’agree that crown birds originated in the mid- to late-
Cretaceous, consistent with crown birdfossils predating the K-Pg boundary (e.g., Field et al.
2020).

Despite variation in tree topologies and branch lengths due to differences in data
completeness, divergence’time estimates were largely consistent across our methods (Fig. 7).
This consistency held-regardless of whether branch lengths were estimated during the tree
search (RAXML=NG and fasttrees) or added later for methods that do not estimate meaningful
branch lengths (supertree and divide-and-conquer analyses). These findings suggest that for
downstream comparative analyses requiring time-calibrated trees, the choice of tree

estimation method may have minimal impact, especially for deeper nodes, provided the
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method reliably recovers topological relationships. These results, supported by our calibrations,
corroborate the hypothesis that the rapid diversification of modern birds occurred near the K-
Pg event. Taking these factors into account, we present the first “macrophylogenomic tree” for

birds, a resource that can be leveraged in future comparative research.

Conclusions

Overall, our analyses demonstrate that accurate macrophylogenies can be estimated using
computationally efficient methods. This was achieved with a heterogeneous dataset assembled
from many independent studies, reflecting the likely approach for estimating most large-scale
phylogenies across the Tree of Life. While assembling such datasets introduces heterogeneity,
our results demonstrate that filtering may not always be necessary. In fact, filtering can lead to
lower accuracy, as we observed, where fewer expected clades were recovered’from filtered
datasets compared to the full dataset.

Our study employed the avian taxonomy from 10C v13.1{(2023) as the basis for the
expected clades and the taxonomic backbones. This version-provided a consistent and well-
supported framework at the time of analysis. As ongaing research continues to refine our
understanding of avian phylogenetics, more recent.taxonomies can help resolve previously
uncertain relationships. These updated resourcesican offer an even greater foundation for
future studies, and our approach demonstrates the utility of a stable baseline for evaluating
methodological performance.

Although we successfully estimated trees using several approaches that appeared
accurate based on expected,clade criterion, traditional supertree and divide-and-conquer
methods required additional information, such as taxonomic backbones, to achieve results
comparable to our best-ML estimates. By contrast, our new fasttree approach with MP starting
trees using the-full.dataset provided a strong alternative to RAXML-NG, delivering similar
topological accuracy and branch length estimates with a substantially reduced computational
burden."Using this approach, replicate analyses to test different MP starting trees and models is

also computationally efficient, and simple criteria, such as likelihood values, can be used to
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assess the resulting trees for those taxonomic groups that lack sufficient study to define
expected clades. Thus, the new fasttree approach we used can be broadly applicable to any
taxonomic group. By demonstrating the feasibility of computationally efficient methods, this

study offers a roadmap for constructing large-scale phylogenies across the Tree of Life.

Data Availability

All the original data (accessions, alignments, summary statistics, taxon subsets, summary of all
fasttree runs, clade ages and tree files) and scripts necessary to reproduce the analyses
reported in this study can be accessed through the Dryad link:
https://doi.org/10.5061/dryad.5dv41nsgw.
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1247  Figure 1. Filtering schemes and.info ion content of different datasets. a) We used a

1248 combination of three stra’@o ilter datasets. Step I. Indv refers to the removal of individual
f

1249  taxa with short sequences for specific loci: indvO indicates that we did not conduct this filtering

1250  step; indv50 and ir%é dicate that sequences shorter than 50% and 75% of the longest
al

1251  sequence for tha nment were removed. Step Il. Sites refers to the trimming of sites

1252  domina N ps and missing data: sites50 indicates that alignment columns where 250% of

1253  tax re gaps or missing are removed; sites70 and sites90 removed columns with >70% or

1254 ps or missing data, respectively. The percentage of taxa with gaps or missing datain a

1255@I mn reflects the number of taxa sampled for the locus of interest. Step Ill. Loci refers to the
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R

removal of poorly sampled loci: loci50, loci70, and loci90 indicate that loci are retained only if
they are sampled for 250%, >70%, and 290% (respectively) of taxa in the full data matrix. b)
Summary statistics (total number of loci, total number of sites, total number of parsimony
informative sites, loci with > 50% data missing, and average proportion of gaps and ambiguities
[“-”, “?” and “N”] across all loci) of the sequence alignments in all 27 filtered datasets. For

missing data information (Stat4 and Stat5), hotter colors represent more missing data.
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N Y
Figure@us-level RAXML-NG tree with branch lengths converted to divergence time using

jor bird clades are color-coded, while three lineages (Gruiformes, Charadriiformes

12660- isthocomiformes; see Reddy et al. 2017) that were not placed within a strongly
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corroborated superordinal clade, remain uncolored (silhouettes in gray). Colored bars in the
outer ring indicate genera that are monophyletic (blue; n = 372) and non-monophyletic (red; n
= 38) in this phylogeny. Monotypic genera (n = 334 with a single species currently recognized in
IOC World Bird List v13.1) and genera represented by a single sample in our dataset (n = 337)
are gray. The concentric gray circles and adjacent integer values indicate 20 Ma time intervals.
The black circle indicates the K-Pg boundary at 66 Ma. See Supplementary Figure S7 for a

version of this tree with tip labels.

Non-monophyletic groups Adjusted CPU time
[ high-level ~ order [l family | genus Basé speed Turbo speed
T4 (OptimaiTrees)  Divide-and-conquer - | 69 126496 252992
T2 (BootstrapTrees) | 67 135712 271424
T3 (OptimalTrees+FamilyBackbonedv1) I 55 126480 252960
T4 (OptimalTrees+FamilyBackbone2v1) | 55 126480 252960
T5 (OptimalTrees+GenusBackbonedv1) I 41 126480 252960
T6 (OptimalTrees+GenusBackbone2v1) I 41 126496 252992
1— RAXML-NG full dataset Concatenation - 40 8406451 10808294
— Fasttree full dataset . 50 44907 62179
Fasttree filter2 (indv0_sites50_loci70) I 44 13291 18403
{ Fasttree filter5 (indv75_sites90_loci70) ] I 52 1290 1786
| Fasttree filter6 (indv50_sites90_loci90) I 49 936 1296
_|: Fasttree filter1 (indv50_sites50_loci50) | 44 16619 23011
Fasttree filter4 (indv50_sites50_loci70) I 46 10338 14314
— Fasttree filter3 (indv0_sites90_loci50) . 47 10234 14170
S2 (PublishedTrees+Jetz+Burleigh+Familybackbone 39 144 288
[ S3 (PublishedTrees+Jetz+Burleigh+Genusbackbone) | 40 144 288
S1 (PublishedTrees+Jetz+Burleigh) Supertree 1 90 112 224
0 25 50 75

Figure 3. Similarity and performance of trees from the initial exploration. The phylogram
represents tree similarity measured with normalized Robinson-Foulds distances and was
constructed using neighbor-jeining followed by midpoint rooting. ASTRAL results are not
included but can be found in the Supplementary Table S11. For each tree, we summarized the
number of high<level clades, orders, families, and genera recognized by I0C World Bird List
v13.1 thatare.not monophyletic in the tree; therefore, the higher the number, the more non-
monophyletic groups. Non-monophyly may be due to artifacts in phylogenetic inference or
taxonomic classification that requires revision. The adjusted CPU time (CPU hours * GFLOPS)

required for each analysis is shown at the right (see Methods for details).
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Non-monophyletic groups Adjusted CPU time
M high-level  order

Base speed Turbo speed

[ family genus
OptimalTrees+FasttreeFilter3+GenusBackbone | 41 134416 268832
OptimalTrees+FasttreeFilter1+GenusBackbone I 41 139280 278560
OptimalTrees+Fulldata_FreeRates_parsD+GenusBackbone 1 | 42 187040 374080
OptimalTrees+Fulldata_FreeRates_parsD Hybrid divide-and-conquer | 42 187536 375072
OptimalTrees+indv0_sites50_loci50_GAMMA_parsB I 42 139888 279776
- RAXML-NG full dataset 40 8406451 10808294
Fulldata FreeRates parsD 40 60560 121120
indv0_sites50_loci50 GAMMA parsB New fasttrees | 42 12912 25824
indv0_sites50_loci70 FreeRates parsC 1 I 42 8304 16608
PublishedTrees+Fulldata_FreeRates_parsD+Familybackbone 37 60576 121152
PublishedTrees+FastreeFulldata+Familybackbone Hybrid supertree . 42 34624 69248
-- PublishedTrees+indv0_sites50_loci50_GAMMA_parsB+Familybackbone 38 12960 25920
PublishedTrees+FasttreeFilter3+Familybackbone . 39 7904 15808
-- PublishedTrees+FasttreeFilter1+Familybackbone [ 41 12816 25632
seeesseanenes indv50_sites90_loci70 FreeRates parsD I 47 11520 23040
----------------- indv75_sites90_loci50 FreeRates parsC New fasttrees - I 45 4800 9600
indv50_sites90_loci90 FreeRates parsC I 48 400 800

0 10 20 30 40 50

1286

1287  Figure 4. Similarity and performance of trees from the modified'methods. Here, we only

1288  present the representative trees for each approach. Full.results can be found in Supplementary
1289  Tables S8-S9. For the two hybrid approaches, we added in/the time for running the backbone
1290 tree. For the new fasttrees with MP starting trees, we.Summarized the compute time for

1291 running four fasttrees analyses for each dataset (using different MP starting trees under GTR+G

1292  [parsA & parsB] or GTR+R4 [parsC & parsR] model) and present the total time of four runs.
1293
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Figure 5. a) Cladogram showing relationships among orders in the best fasttree using the full

dataset and the new fasttree approach with/MP starting trees (tree no. 8). Vertical bars next to

order names indicate composition of high-level clades. b) We compared recovery of high-level

clades in trees estimated from'the full dataset (both by RAXML-NG and initial fasttree analysis

via IQ-TREE) and trees with the’best expected clade recovery using various approaches: two

initial fasttrees using filtered datasets, the initial supertree and divide-and-conquer trees, the

new fasttrees using MP starting trees (filtered dataset and full dataset), and the trees using

hybrid supertree and divide-and-conquer methods.
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Figure 6. A comparison between the number of unresolved expected clades (genera, high-level
clades, and all expected clades combined) and parsimony,informative sites (top panels), as well

as average proportion of gaps and ambiguities (“-
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1316  Figu @latlon in estimated divergence times for different analyses. a) Standard deviations
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ages (Ma) for evaluated clades in four ranks (genus, family, order and high-level

were calculated using our time trees. Only monophyletic groups were evaluated. The
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plot of standard deviations shows their median, interquartile range (box), and 1.5x the
interquartile range (whiskers). b) Crown ages for 12 major avian clades with relative divergence
time (to Neognathae) for our time times. Crown ages from eight published time trees are
included for comparison. c¢) Crown ages for 12 major avian clades shown as absolute divergence

time.
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Table 1. Summary of datasets, analyses, and phylogenetic trees in our initial exploration. The six

filtered datasets were numbered based on total number of sites; filterl included the highest

number of sites and filter6 included the lowest number of sites.

METHOD ANALYSIS INPUT DATASET TREE
Supermatrix RAXML-NG Full dataset RAXML-NG full
(baseline) dataset
Supermatrix Fasttree via IQ-TREE Full dataset Fasttree full
(Strategy 1) dataset
Filterl (indv50_sites50_loci50) Fasttree filterl
Filter2 (indvO_sites50_loci70) Fasttreedilter2
Filter3 (indv0_sites90_loci50) Fasttree filter3
Filter4 (indv50_sites50_loci70) Fasttree filterd
Filter5 (indv75_sites90_loci70) Fasttree filter5
Filter6 (indv50_sites90_loci90) Fasttree filterb
Coalescent Gene tree estimation Full dataset See Data
species tree via IQ-TREE Filterl (indv50_sites50_loci50) Availability
(Strategy 2) & Filter2 (indv0_sites50_loci70) section
Gene tree summary via  Filter3 (indvO_sites90_loci50)
ASTRAL Filter4 (indv50_sites50_loci70)
Filter5 (indv75_sites90_lociZ0)
Filter6 (indv50_sites90..1oci90)
Supertree Without taxonomic PublishedTrees+Jetz+Burleigh S1
(Strategy 3) backbone
Family backbone PublishedTrees+Jetz+Burleigh+Familybackbone S2
Genus backbone PublishedTrees+Jetz+Burleigh+Genusbackbone  S3
Divide-and- Without backbone OptimalTrees T1
;::t':::eegry a) Without backbone BootstrapTrees T2
Family backbone OptimalTrees+FamilyBackbone4:1 T3
weighted 1:4
Family backbone OptimalTrees+FamilyBackbone2:1 T4
weighted 1:2
Genus backbone OptimalTrees+GenusBackbone4:1 T5
weighted 1:4
Gends backbone OptimalTrees+GenusBackbone2:1 T6
weighted1:2
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1331  Table 2. Summary of datasets, analyses, and phylogenetic trees using modified methods.

METHOD ANALYSIS INPUT DATASET TREE
GTR+G Replicates A,B  New fasttrees,
Fasttree via 1Q- Full dataset GTR+RA Replicates C.D four for each
Fasttrees TREE using dataset (GAMMA
with MP parsimony starting GTR+G Replicates A,B  parsA, GAMMA
starting trees  trees estimated b 27 filtered arsB, FreeRates
J . 4 GTR+R4 Replicates C,D P
Parsimonator datasets parsC, FreeRates
parsD)
PublishedTrees + Fasttree Fulldata Nine hybrid
PublishedTrees + Fasttree filterl — 6 supertrees with
Include a fasttree PublishedTrees + Fulldata_FreeRates_parsD different fasttree
backbone PublishedTrees + as backbone,
indvO_sites50_loci50_GAMMA_parsB without
taxonomic
backbone
Hybrid PublishedTrees + Fasttree Fulldata +
supertree Familybackbone Nine hobrid
ine ri
PublishedTrees + Fasttree filterl — 6 + ty ith
supertrees wi
Include a fasttree Familybackbone d'f-rf) ¢ fastt
ifferent fasttree
and a family PublishedTrees + Fulldata_FreeRates_parsD + lus a familv-level
backbone Familybackbone P . Y
taxonomic tree as
PublishedTrees + backbones
indv0_sites50 loci50_GAMMA parsB +
Familybackbone
OptimalTrees + Fasttree Fulldata Nine hybrid
OptimalTrees + Fasttree filterl — 6 divide-and-
OptimalTrees + Fulldata_FreeRates_parsD conquer trees
Include a fasttree OptimalTrees + with different
as backbone indv0_sites50_loci50_GAMMA_parsB fasttree as
backbone,
without
Hvbrid taxonomic
ybri
backbone
divide-and-
OptimalTrees + Fasttree Fulldata + Nine hvbrid
conquer
9 GenusBackbone ine hybn
divide-and-

Include a fasttree
and a genus
backbone

OptimalTrees + Fasttree filterl — 6 +
GenusBackbone

OptimalTrees + Fulldata_FreeRates_parsD +
GenusBackbone

OptimalTrees +
indv0_sites50 loci50_GAMMA parsB +
GenusBackbone

conquer trees
with different
fasttree plus a
genus-level
taxonomic tree as
backbones
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