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Avian diversification has been influenced by global climate change,
plate tectonic movements, and mass extinction events. However,
the impact of these factors on the diversification of the hyper-
diverse perching birds (passerines) is unclear because family level
relationships are unresolved and the timing of splitting events
among lineages is uncertain. We analyzed DNA data from 4,060
nuclear loci and 137 passerine families using concatenation and
coalescent approaches to infer a comprehensive phylogenetic
hypothesis that clarifies relationships among all passerine families.
Then, we calibrated this phylogeny using 13 fossils to examine the
effects of different events in Earth history on the timing and rate
of passerine diversification. Our analyses reconcile passerine diver-
sification with the fossil and geological records; suggest that pas-
serines originated on the Australian landmass ∼47 Ma; and show
that subsequent dispersal and diversification of passerines was
affected by a number of climatological and geological events, such
as Oligocene glaciation and inundation of the New Zealand land-
mass. Although passerine diversification rates fluctuated through-
out the Cenozoic, we find no link between the rate of passerine
diversification and Cenozoic global temperature, and our analyses
show that the increases in passerine diversification rate we ob-
serve are disconnected from the colonization of new continents.
Taken together, these results suggest more complex mechanisms
than temperature change or ecological opportunity have controlled
macroscale patterns of passerine speciation.
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The diversification of modern birds (Neornithes) was shaped
by numerous factors, including a mass extinction event (1–3),

shifts in connectivity between continents (4, 5), and changes in
global climate (4, 6). Specific ecological, geological, and clima-
tological events proposed to be associated with the diversifica-
tion and global distribution of Neornithes include opening of
ecological niches following the Cretaceous-Paleogene (K-Pg)
mass extinction event (2, 3, 7, 8), establishment of dispersal
corridors linking the geographic origin of modern birds to other
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landmasses during the Paleogene (4), rapid continental drift and
island formation in Wallacea allowing the dispersal of songbirds
out of Australia (5, 9), fragmentation of tropical habitats during
cooling events of the Late Cretaceous and Cenozoic (4, 10), and
expansion of temperate habitats and retreat of glaciers during the
Miocene (6). Although we are beginning to understand how Earth
history affected the early diversification of modern birds, we
understand much less about the macroevolutionary factors that
affected diversification within specific major avian subclades,
including the hyperdiverse passerines (order Passeriformes).
Passerines comprise more than 6,000 extant species, repre-

senting more than 60% of extant avian diversity. During the past
two decades, new data have elucidated the diversity of (11, 12)
and relationships among (5, 9, 13–17) a number of major pas-
serine lineages (summarized in ref. 18), resulting in the expan-
sion of the number of recognized passerine families from 46 to
137 (11, 12). However, our understanding of the relationships
among these major subclades remains incomplete. Numerous
apparently rapid divergence events within passerines have hin-
dered reconstruction of their evolutionary interrelationships
when sampling few loci (<10) (4, 9, 14, 15, 19) or few taxa (<70%
of passerine families) (5, 17, 20).
Knowledge of the time frame of passerine evolution has

changed substantially in recent years as well. Historically, be-
cause of a dearth of reliably vetted fossils, the age of crown
passerines was calibrated based on the geological separation of
New Zealand from the rest of Gondwana ∼82 Ma (9, 14, 15).
This Late Cretaceous calibration for crown passerines not only
predates the earliest fossils that may belong to stem passerines
(21) by 27 Ma but also exceeds the age of the earliest known
crown bird fossil (22) by 15 Ma. Subsequent studies frequently
used this age estimate, or associated secondary calibrations,
entrenching major discrepancies between the inferred timing of
evolutionary events and the fossil record (23–25). More recently,
studies that used fossil calibration-based divergence time analy-
ses (2–4, 19, 26) or combined fossils with biogeographic cali-
brations (27) estimated a much younger Eocene origin for crown
passerines, bringing age estimates closer in line with the fossil
record. However, the timing of diversification across passerine
families has remained unclear because of sparse sampling (<25%
of passerine families) (2, 3) or because analyses have been per-
formed using phylogenetic hypotheses with considerable un-
certainty about the placement of passerine lineages (4, 19, 26,
27). Moreover, the number of fossil calibrations within passerines
has often been small (fewer than five) (2–4) or the choice of cali-
bration points has been questionable (19, 26, 27), because many of
the fossils used had ambiguous phylogenetic affinities or incom-
pletely vetted phylogenetic placement, stratigraphic position, or
priors in light of best practices for calibration justification (28).
Uncertainty regarding the relationships among passerine fam-

ilies and the timing of passerine evolution has prevented robust
tests of hypotheses explaining the roles of geology, climate, and
ecology in diversification of this clade. For example, precise age
estimates are critical for determining the extent to which pas-
serine diversification was affected by major climatological events
during the Paleogene (29–32) or more gradual global climate
shifts throughout the Cenozoic (4). Similarly, robust and taxo-
nomically well-sampled phylogenetic hypotheses are critical for
accurately estimating shifts in diversification rates (33). Finally, a
combination of better age estimates and more accurate phylog-
eny is important for examining various historical biogeographic
hypotheses in light of geological events (34–36).
Here, we analyze genome-scale DNA sequence data from

thousands of nuclear loci to infer a phylogenetic hypothesis for
all 137 currently recognized passerine families (12). Based on
this phylogenetic hypothesis and the largest set of vetted (28)
passerine fossil calibrations used to date, we estimate a time
frame for passerine diversification using a variety of analytical

approaches. We then use our time-calibrated phylogeny and
fossil data to investigate passerine biogeography and diversifi-
cation rates, as well as the influence of major events in Earth
history on the evolution of passerines.

Results and Discussion
Data Characteristics. By collecting new sequence data and inte-
grating them with data from other studies, we assembled a set of
4,060 ultraconserved element (UCE) loci from 221 individuals
representing all passerine families and closely related outgroup
families of parrots, falcons, and seriemas (Dataset S1). Our sam-
pling included the extinct Hawaiian honeyeaters (Mohoidae), as
well as the recently established monotypic family of the spotted
elachura (Elachuridae) (37). The concatenated alignment
consisted of 2,464,926 nucleotide sites, 811,688 of which were
parsimony-informative, and the data matrix contained 7.3%
missing characters. Individual alignments of trimmed UCE loci
averaged 607 bp in length (range: 155–1,410 bp) and contained an
average of 200 parsimony-informative sites (range: 2–631 sites).

Phylogeny.Concatenation and coalescent analyses, supplemented
by analyses of subsets of the data matrix (Materials and Methods),
produced highly resolved (bootstrap support >70% for 95% of
220 nodes) and largely congruent estimates of phylogenetic re-
lationships among passerine families, with only 3–4% of nodes
exhibiting conflict between the coalescent and concatenation
results (Figs. 1 and 2, SI Appendix, Figs. S1–S5, and Dataset S2).
Our analyses resolved three well-established main clades of passerines
(9, 13–15) (Figs. 1 and 2): the New Zealand wrens (Acanthisittidae),
the suboscines (Tyranni), and the oscines (Passeri). Our results also
confirmed the main subdivisions among suboscines (38, 39): the Old
World suboscines (Eurylaimides), the ovenbirds and allies (Furnar-
iida), and the tyrant flycatchers and allies (Tyrannida). Our improved
sampling allowed us to delineate membership of the oscine infraorders
Corvides and Passerides more robustly than in earlier work (5). At a
finer scale, our results resolved relationships in a number of clades that
have been difficult to place and support the recognition of one family
of enigmatic Afrotropical species and five other families recognized in
some taxonomic checklists (40, 41). A more complete description of
these and other phylogenetic results is provided in SI Appendix.

Time Frame of Passerine Diversification. Our comprehensive taxo-
nomic sampling allowed us to estimate the timing of origin for
all passerine families. The dating analyses (Figs. 1 and 2) suggest
that crown passerines began to diversify during the Middle Eo-
cene (∼47 Ma) and suboscines and oscines diverged ∼44 Ma. We
inferred Late Eocene origins of crown suboscines (∼39 Ma) and
oscines (∼38 Ma). These dates are approximately half the age of
previously published estimates based on the separation of New
Zealand from the rest of Gondwana (14, 15, 42) but are much
closer to more recent estimates that used fossil calibrations or
fossil-derived secondary calibrations (2–5, 19, 20, 26) (Fig. 3 and
SI Appendix, Fig. S6). Although the extent of taxon sampling has
varied among previous studies, the credible intervals of our date
estimates within passerines generally had broader overlap with
the earlier estimates of Prum et al. (3) and Selvatti et al. (19)
than with those of Claramunt and Cracraft (4) (5–10 Ma older)
or Moyle et al. (5) (2–7 Ma younger).
Our divergence time estimates are generally consistent (overlapping

95% credible intervals) across randomly sampled datasets and
are robust to the choice of prior distribution (log-normal or
uniform), maximum age constraint, loci sampled (random versus
most clock-like), and statistical methodology (BEAST versus
MCMCTree; Fig. 3 and SI Appendix, Figs. S6 and S7). Posterior dis-
tributions of age estimates for passerine nodes were distinguishable
from joint prior distributions (Fig. 3 and SI Appendix, Figs. S6 and
S7), suggesting that our age estimates were driven by data rather
than priors alone, and the mean of the coefficient of variation of
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Fig. 1. Family-level phylogenetic relationships in passerines reconciled from concatenation and coalescent analyses (connects to top of Fig. 2 at the circled
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clock rates among lineages ranged from 0.28 to 0.44 across anal-
yses, with 95% credible interval limits as low as 0.24 and as high as
0.48, suggesting that our choice of a relaxed clock model was
appropriate. This level of rate heterogeneity across the tree is

lower than those reported in recent avian phylogenomic studies
that sampled more broadly across extant birds (4, 43). Removal of
some or most fossil calibrations did not significantly change di-
vergence time estimates at uncalibrated nodes but had mixed effects
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Fig. 2. Family-level phylogenetic relationships in passerines reconciled from concatenation and coalescent analyses (connects to bottom of Fig. 1 at the
circled star). Biogeographic reconstruction including fossil taxa (Inset, tree) yields identical ancestral areas for crown lineages of passerines, suboscines, and
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on the estimated ages of calibrated nodes (Fig. 3 and SI Appendix,
Fig. S6). For example, removing fossil calibrations for Falconidae
and Acanthisittidae resulted in younger estimates for each calibrated
node, while the removal of the fossil calibrations for Menuridae-
Atrichornithidae and Strigopidae resulted in slightly older estimates.

Biogeography.
Diversification history of passerines. Biogeographic reconstructions
under both the dispersal-extinction-cladogenesis (DEC) and
DEC + j models suggest that the ancestral area of crown pas-
serines was the Australo-Pacific region (Fig. 1). These results are

robust to the signal from passerine and outgroup fossils from
Europe and North America (7): In iterative analyses exploring
six possible topologies created by grafting four fossil taxa onto
our tree, the DEC + j model continued to yield an Australo-
Pacific origin of crown passerines (SI Appendix, Fig. S8). Re-
constructions using the DEC model were more sensitive to the
phylogenetic position of fossil taxa (SI Appendix, Fig. S9). These
biogeographic results are consistent with previous hypotheses
suggesting that passerines originated in the Southern Hemisphere
(9, 15, 19, 44, 45), as well as with the discovery of the oldest pu-
tative passerine fossils from the early Eocene of Australia (21).
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Our results contrast with one analysis (4) suggesting that crown
passerines originated in South America ∼53 Ma. The difference
among studies could be attributed to methodological differences
[parsimony versus maximum likelihood (ML)], the included fossil
and outgroup taxa, or alternative codings of the geographic re-
gions. Choice of method seems to have played a large role, be-
cause the alternative ML analysis of Claramunt and Cracraft
(figure S3A of ref. 4) also showed the highest probability for an
Australian origin of crown passerines. Another interpretation of
the differences between the two studies is simply that these results
reflect the difficulty of pinpointing where passerines originated,
because South America, Antarctica, and Australia were connected
during the Paleocene and Eocene, although exact details of these
connections are debated (46, 47). It is also important to consider
that biogeographic reconstructions can be biased by model choice
(48), better sampling of fossils in the Northern Hemisphere com-
pared with the Southern Hemisphere (49), and extinction (50).
Thus, we suggest that biogeographic reconstructions at the deeper
nodes of passerine phylogeny be interpreted cautiously and updated
as new information from the fossil record comes to light.
Diversification history of crown suboscines. Biogeographic analyses
under the DEC + j model suggest a Eurasian origin of crown
suboscines (Tyranni; Fig. 1) and a North/Central American origin
of crown NewWorld suboscines (Tyrannides; Fig. 1), regardless of
the placement of fossil taxa (SI Appendix, Fig. S8). Reconstruc-
tions using the DEC model were equivocal (SI Appendix, Fig. S9).
The DEC + j results are consistent with a suboscine diversification
hypothesis based on paleontological data (7): As the Turgai Strait
closed between Asia and Europe (event d, Figs. 1 and 2), non-
oscine passerine fossils abruptly appear in Europe during the
earliest Oligocene (51), which suggests that their ancestors may
have dispersed from Australia to Europe through Asia (7, 52).
The Beringian land bridge and the warm temperatures of the
Late Eocene (53) could have provided a plausible route for
dispersal to North America from Asia. In addition, the passerine
fossil record in the Americas is more consistent with suboscine
dispersal from North America to South America (7). However,
the hypothesis of a Eurasian origin of crown suboscines hinges
on two critical assumptions: (i) transoceanic dispersal of sub-
oscine ancestors from Australia to Asia and from North America
to South America during the Eocene (notably, only a few extant
lineages of suboscines are known to disperse over large oceanic
expanses) and (ii) a failure of these ancestors to cross the Turgai
Strait from Asia to Europe during the same epoch. This hypothesis
is an alternative to the idea that crown suboscines originated in
South America after trans-Antarctic separation from oscines in
Australia (4, 19). Although unsupported by our biogeographic re-
constructions, the South American origin hypothesis is compatible
with our dating results. Our estimate of the split between oscines
and suboscines ∼44 Ma occurs well before the appearance of
ephemeral ice sheets in Antarctica during the Late Eocene (54)
(event c, Fig. 1), which would have made the trans-Antarctic route
implausible. Given the differences among these competing hypoth-
eses, and until additional Paleogene fossils of nonoscine passerines
are collected from Asia and South America, arguments regarding
the biogeographic origins of crown suboscines remain unresolved.
Origin of Old World suboscines. The phylogenetic placement of the
monotypic Neotropical family Sapayoidae within the Old World
suboscines (Eurylaimides) is critical to understanding the origins
of Eurylaimides and has been the subject of active research (16,
23, 38, 39, 55, 56). Our phylogenetic analyses place Sapayoidae
firmly as sister to Old World pittas (Pittidae), well embedded
within the Eurylaimides (Fig. 1 and Dataset S2). Our DEC + j
results unequivocally suggest crown Eurylaimides originated in
Eurasia (SI Appendix, Fig. S8), whereas our DEC results are
again sensitive to the placement of fossil taxa (SI Appendix, Fig.
S9). Variance around the point estimates of divergence times
suggests the rapid splitting of Eurylaimides lineages among

Africa, Eurasia, and the New World potentially occurred during a
period of Late Oligocene warming (event g, Fig. 1), as ancestral
species took advantage of warmer temperatures and the resulting
habitats that connected these continents. Continental connectivity
during this period is supported by fossil data that show the movement
of mammals from Africa into Eurasia during the Late Oligocene (57,
58) and from Asia into North America during the Oligocene (59).
Our phylogenetic results do not support the Atlantogea hypothesis
(56), which invokes a Paleogene island chain between Africa and
South America and relies on a sister relationship between Sapayoidae
and the rest of Eurylaimides. Our estimated divergence date
between Eurylaimides and the New World suboscines also conflicts
with the use of intermittent land bridges between North and South
America by ancestors of Eurylaimides during the Early Paleogene
(4) (event a, Fig. 1). Finally, our results are compatible with the
hypothesis of Laurasian diversification within Eurylaimides (4,
23), although our time frame differs by as much as 25 Ma (23).
Oligocene glaciation and passerine diversification. Our passerine chro-
nogram exhibits potential signatures of the Oligocene glaciation
(event e, Figs. 1 and 2) on passerine diversification. This extended
period of reduced temperature, which started at the Eocene-
Oligocene boundary and lasted until the Late Oligocene warming,
led to the formation of the first permanent Antarctic ice sheets and
a global decline of broadleaf forests (54). The climatic changes that
occurred at the beginning of the Oligocene glaciation caused ex-
tensive turnover of mammal species in Europe and Asia, known as
the “Grande Coupure” and “Mongolian Remodelling” (29, 31), yet
the effect of the Oligocene glaciation on Cenozoic avifaunas is
poorly known (60). We infer long branches subtending the suboscine
clades Eurylaimides, Furnariida, and Tyrannida spanning 38–28 Ma,
followed by rapid diversification of these crown clades during a pe-
riod in which the credible intervals of our estimates overlap the Late
Oligocene warming. These observations are consistent with the hy-
pothesis that extinctions during the Oligocene glaciation drastically
reduced diversity in each of these mostly tropical bird groups, fol-
lowed by rapid diversification of each group as temperatures rose
again. Another explanation for the long branches leading to crown
Eurylaimides, Furnariida, and Tyrannida could be low diversification
rates early in the evolutionary history of suboscines, yet the fossil
record of suboscines during the Early and Late Oligocene of Europe
(7, 61) shows that suboscines were more diverse during the Oligo-
cene than the number of surviving lineages from that period suggests.
Although the immigration of mammal predators from Asia to
Europe during the Grande Coupure is one alternative to explain the
extinction of some avian lineages in Europe during the Paleogene
(60), this hypothesis cannot explain apparent suboscine extinctions in
the New World. A long branch also leads to crown oscines, but this
clade comprised threefold as many surviving lineages compared with
suboscines by the Middle Oligocene. The higher survival rate of
oscine lineages during the Oligocene glaciation could be tied to a
combination of factors, including differences in food preference,
habitat availability, and geographic location. The presence of species
that occur in temperate and montane habitats among deeply di-
verging oscine lineages, such as the Menuridae and Ptilono-
rhynchidae, could also indicate their greater viability in colder
temperatures during the Oligocene glaciation.
Oscine diversification out of Australia. Our biogeographic analyses
suggest that the ancestors of two distantly related oscine line-
ages, the family of rockfowl, rockjumpers, and the rail-babbler
(Eupetidae) and the clade formed by Sylviida, Muscicapida, and
Passerida, were the first oscines (and the only lineages in Pass-
erides) to reach Eurasia from Australia (Figs. 1 and 2). Our
estimate for the arrival of oscines in Eurasia (∼27 Ma) is con-
sistent with the fossil record: No crown passerine fossils have
been reported from the Eocene of Europe despite extensive
collecting of small bird fossils, whereas oscines appear in Europe
∼24 Ma and are well represented from the Late Oligocene on-
ward (61, 62). Our age estimate for the arrival of oscines in Asia
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is slightly older than the 23 Ma estimated in a recent oscine study
(5). However, our results remain consistent with the idea that uplift
in Wallacea occurring 20–30 Ma (63) (event f, Figs. 1 and 2) pro-
duced island chains that served as a dispersal corridor for oscines
from Australia to Asia (5), and they contrast with the hypothesis of
direct dispersal from Australia to Africa during the Eocene (64, 65).
We inferred three other independent dispersal events of oscine
lineages out of Australia in the Corvides clade, all involving dis-
persal to Eurasia during the Early Miocene (Fig. 1). These inva-
sions were made by oscines in the family Vireonidae and the
superfamilies Corvoidea and Malaconotoidea, with members of the
first two clades eventually reaching the New World. Finally, our
results suggest two instances of back-colonization to Australia from
Eurasia in the superfamily Corvoidea and several reinvasions of
Australia from Passerides lineages, but denser sampling of taxa is
required to clarify the details of these events.
New Zealand biogeography. Our age estimates provide insight into
how the inundation of the New Zealand landmass during the
Oligocene (30, 32) (event h, Figs. 1 and 2) might have affected
the endemic parrot and passerine families of New Zealand.
Assuming Strigopidae, Acanthisittidae, and the oscine lineages
Callaeidae and Notiomystidae are autochthonous, our Oligocene
estimate of time of origin for each of these New Zealand endemic
families (Figs. 1 and 2) is consistent with the idea that these birds
survived the Oligocene drowning event (66, 67). Our estimate of the
age of crown passerines ∼47 Ma also suggests that the divergence of
the Acanthisittidae from all other passerines was not driven by the
formation of the Cato Trough (event b, Fig. 1) between New Zealand
and Australia (19). In contrast to these more general results for New
Zealand passerine families, our age estimates suggest that the New
Zealand-endemic mohouas (Mohouidae) in Corvides diverged from
the sittellas (Neosittidae) of Australasia during the Early Miocene
∼20 Ma, a substantially younger age for mohouas than previously
estimated (20). This divergence estimate implies that mohoua an-
cestors dispersed to New Zealand following the Oligocene drowning
event. It is also notable that the split of Callaeidae and Notiomystidae
from other oscines in Passerides has a credible interval that overlaps
with the divergence of Strigopidae from all other parrots during the
Oligocene 29–31 Ma (Figs. 1 and 2). The coincidence of these splits
is likely random, arising from events like over-water dispersal,
because no geological evidence supports the existence of a land
bridge connecting Australia and New Zealand 29–31 Ma.

Rates of Passerine Diversification.
Diversification rate and global temperature. Previous research sug-
gested an inverse relationship between global temperature dur-
ing the Cenozoic and the diversification rate of modern birds (4).
To determine the strength of this relationship in passerines, we
estimated episodic diversification rates [i.e., one overall rate for
each 2-million-y period of the passerine tree]. Passerine net di-
versification rates increased slightly during the Middle Oligocene
to the Early Miocene; decreased during the Middle Miocene;
and rose sharply during the Late Miocene, Pliocene, and Pleis-
tocene (Fig. 4). The sharp rise in diversification rate from the
Late Miocene onward should be interpreted with caution: Al-
though our method accounted for missing taxa, rate estimates
during this period are based on few estimated splits along our
backbone tree. Despite these rate fluctuations, we did not find
strong support for an inverse relationship between passerine
diversification rate and global temperature. The probability of a
negative correlation between the logarithm of speciation rate
and global temperature change was only 0.56, and support for
the correlation was negligible (68) [Bayes factor (BF) = 1.46].
Support for this correlation remained negligible (BF = 1.00)
when we considered slightly longer episodes of 5 million y, as in
the estimates of Claramunt and Cracraft (4), or weak (BF =
3.54) when we used a tree dated with uniform priors (in which
some nodes were 1–6 Ma older than those estimated using

log-normally distributed priors). Taken together, these results
suggest that the inverse relationship between global temperature
and diversification rate may be strong across Neornithes gener-
ally (4) but is not evident among passerines.
Diversification rate shifts.Global correlations of diversification with
climate assume a uniform response among lineages, an as-
sumption likely to be violated in an ecologically heterogeneous
and rapidly diversifying lineage such as passerines. To test for di-
versification rate shifts among passerine lineages, we conducted
branch-specific diversification rate analyses using our well-resolved
and taxonomically well-sampled phylogeny. These analyses yield-
ed strong evidence of multiple higher level rate shifts across the
passerine tree (Figs. 1 and 2 and SI Appendix, Fig. S10 and Table
S1). The posterior distribution of the number of rate shifts had a
mode of 19, ranging from a minimum of 14 to a maximum of 25.
The majority of rate shifts were rate increases in specific lineages
relative to the passerine background. The three clades with the
highest support for a rate shift belong to Muscicapoidea, Sylviida,
and Passerida (SI Appendix, Fig. S10 and Table S1), roughly
corresponding to oscine radiations originally recognized by DNA/
DNA hybridization data (13). Additional clades with strong evidence
of rate increases include the New World oscine families Thrau-
pidae and Parulidae, the Neotropical suboscine family Thamno-
philidae, and the globally distributed Corvidae. The largest shift in
diversification rate occurred in the Parulidae, with a more than
sixfold net increase relative to the passerine background. The next
two largest rate shifts (4.6- and 4.2-fold the background net di-
versification rate) were in the same higher clade (the Ember-
izoidea, a subclade of the Passerida), whereas the remaining shifts
ranged from approximately two- to fourfold the background rate
and were spread across the passerine tree. Nine of the 14 clades
with the highest support for rate shifts were represented by at least
two tips on our phylogeny, and all were well supported by both
concatenation and coalescent approaches to topology estimation.
None of the 14 clades exhibiting rate shifts appear to coincide with
range shifts estimated from our biogeographic analyses (Figs. 1
and 2), suggesting that the rate increases we observed were not
associated with colonization of new landmasses. Three rate shifts
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Fig. 4. Estimate of episodic diversification rate of passerines (solid line) and
95% credible interval (light blue band) based on RevBayes analysis of our
chronogram (Figs. 1 and 2) across time periods of 2 million y. Global deep
ocean temperature data used in the analysis (dotted red line) were taken
from ref. 99. Geological and climatic events from Figs. 1 and 2 (excluding
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appear to have occurred almost simultaneously during the Oligocene-
Miocene transition in three different oscine clades on three different
continents (Figs. 1 and 2): near the base of Corvides, within
Sylviida, and near the base of Passerida. Together, these clades
comprise 3,396 extant species, roughly 56% of extant passerine di-
versity. The coincidence of these rate shifts suggests a relationship
between the climatic and ecological transition of the Oligocene-
Miocene boundary and oscine diversification. The expansion of
open areas, especially grasslands, during the Miocene (69) would
have created a suitable habitat for ancestors of these groups while
simultaneously fragmenting forest areas and creating new edge-
habitats around forest fragments. Both novel habitats and frag-
mentation of old habitats could have stimulated speciation events.
A large macroevolutionary study (6) reconstructed diversification

rates across a synthetic tree of avian relationships and found at least
some evidence for 14 rate shifts within the passerine portion of the
phylogeny. We corroborated only five of these 14 rate shifts, in-
cluding two that were strongly supported (shift detected in >50% of
their sampled trees) and three that were weakly supported (shift
detected in 25–50% of their sampled trees) in their analyses (SI
Appendix, Table S1). Importantly, nine of our 14 (65%) best-
supported rate shifts were not detected in previous analyses. The
two rate shifts we corroborated that had strong support in previous
analyses occurred (i) at the branch leading to the Furnariidae and
Dendrocolaptidae (node N in figure 2 of ref. 6) and (ii) at the base
of the Passerida (node X in figure 2 of ref. 6). Our analysis differed
slightly regarding the location of the rate shift within Passerida,
placing the shift closer to the initial divergence in crown Passerida
than in the analyses of Jetz et al. (6) (SI Appendix, Fig. S10). It is
likely that both analyses are detecting the same event, although our
results suggest the rate shift occurred several million years earlier.
Given the biology of the included taxa, this rate shift could be as-
sociated with adaptation to more carbohydrate-rich diets. The only
other rate shift within passerines strongly supported by Jetz et al. (6),
at the base of the Timaliidae (inclusive of the zosteropids; node T in
figure 2 of ref. 6), was not supported by our analyses (SI Appendix,
Fig. S10). It is likely that we were unable to recover the rate shift
identified by Jetz et al. (6) in Zosteropidae (node T in figure 2 of ref.
6) because we sampled only one representative of the family, but we
found no evidence for the remaining eight passerine rate shifts
suggested in that study. Although our tree contains fewer sequenced
taxa than the tree of Jetz et al. (6), our extensive sampling of loci
and sites likely allowed us to infer relationships more consistently
across analyses with higher support and to more accurately estimate
branch lengths. Consequently, our analyses offer an updated per-
spective on lineage-specific patterns of diversification rate in pas-
serines, although some of the differences between the two studies
can be attributed to methodological approach (SI Appendix, Table
S2). We expect that comprehensive reanalyses of avian relationships
and diversification using similar approaches will yield additional
insights into the evolution of all birds, although we recognize that
future work should examine how diversification rate shifts could be
confounded by correlated shifts in diversification and molecular
clock rates (70) or extinction dynamics (50).
The phylogenetic hypothesis of passerine relationships and the

time line we estimate for passerine diversification reconcile the
evolutionary history of this group with paleontological, geo-
logical, and climatic data. We find that passerine diversification
is driven by dynamics that are more complex than simply Cenozoic
temperature change or ecological opportunity associated with the
colonization of new landmasses. Still, the drivers of diversification
within this group remain incompletely understood. Denser sam-
pling of passerine lineages, combined with improved sampling of
the passerine fossil record (particularly outside of Europe and
North America), is needed to refine our estimates of lineage-
splitting events and tease apart those macro- and microevolu-
tionary factors that were responsible for the diversification of this
extraordinary group.

Materials and Methods
Sampling Design. For this study, we used phylogenetic analysis of 4,060 UCEs
to infer a time-calibrated phylogenetic hypothesis of 209 passerine lineages
and 12 outgroup lineages. Specifically, we used targeted enrichment of UCEs
(71) to collect new sequence data from 113 passerines (Dataset S1), and we
combined these with existing UCE sequence data collected from 104 pas-
serine lineages as part of earlier studies (5, 72, 73). We also included UCE loci
harvested, in silico, from four publicly available genomes (74). To identify
and collect data in silico, we followed an established protocol (71, 75) to
align the bait set of 5,060 UCE loci to each genome and extract matching loci
plus or minus 500 bp of flanking sequence. We integrated previously col-
lected and in silico data into the analysis pipeline during the data assembly
steps. Full details of laboratory methods, data assembly steps, topology es-
timation procedures, divergence time estimation approaches, biogeographic
methods, and diversification rate analyses are provided in SI Appendix, Ex-
tended Materials and Methods.

Library Preparation and Sequencing. We extracted DNA from tissues of
113 vouchered museum specimens (Dataset S1) using the Qiagen DNeasy
Blood and Tissue Kit, and we prepared sequencing libraries for the Illumina
platform using a commercial kit (Kapa Biosystems, Inc.), 1/2 reactions, and
dual indexes (76). Before sequencing, we enriched pools of sequencing li-
braries for a set of UCE loci using commercially synthesized baits targeting
5,060 loci (Mycroarray MYbaits Kit for Tetrapods UCE 5K, version 1). After
enrichment, we used 18 cycles of PCR to recover enriched loci, we measured
fragment size of libraries using an Agilent 2100 Bioanalyzer, and we quan-
tified final libraries using an Illumina Eco qPCR System with a commercial
quantification kit (Kapa Biosystems, Inc.). We sequenced enriched libraries
using a paired-end run of 300 cycles (150 bp in each read direction) on an
Illumina HiSeq 3000 System at the Oklahoma Medical Research Facility.

Data Assembly. We trimmed the raw fastq data from each library using
illumiprocessor, version 2 (https://github.com/faircloth-lab/illumiprocessor).
We assembled reads from tissues using Trinity, version trinityrnaseq-r2013-
02-25 (77), and we assembled reads from toepads using Spades, version 3.9.0
(78). After assembly, we grouped new assemblies with those from previous
work and the in silico data collected from genomes (Dataset S1), and we
performed the remaining data preparation steps using PHYLUCE (79) fol-
lowing a standard protocol (80). These steps produced trimmed alignments
of UCE loci where all loci included data from at least 80% of all 221 taxa.

Topology Estimation. We used concatenation and coalescent approaches to
estimate phylogenetic relationships among passerines. First, we concate-
nated the trimmed alignments and performed ML inference using ExaML,
version 3.0.15 (81), assuming a general time-reversible model of rate substitution
and gamma-distributed rates among sites. We evaluated node support using
100 bootstrap replicates, and we tested for convergence of bootstrap replicates
a posteriori using the “autoMRE” option in RAxML, version 8.2.8 (82). Second,
we used four coalescent programs to estimate species trees: (i) SVDquartets
(83, 84); (ii) ASTRID, version 1.3 (85); (iii) ASTRAL-II, version 4.10.11 (86); and (iv)
STEAC (phybase version 1.4) (87). We evaluated nodal support for ASTRID, AS-
TRAL, and STEAC by generating 100 multilocus bootstrap replicates (88), and we
estimated nodal support for SVDquartets trees using the same 100 bootstrap
replicates we generated for ML analysis.

We observed conflicts among species trees produced by the two analytical
paradigms (concatenation and coalescent) for the placement of 27 taxa (SI
Appendix, Figs. S1–S5 and Dataset S2). To investigate this issue, we per-
formed additional ASTRID, ASTRAL, and STEAC analyses of subsets of the
data matrix (Datasets S2 and S3). These analyses eliminated most of the
highly supported inconsistencies across methods; only five taxa had highly
supported conflicting placements following these analyses (SI Appendix, Fig.
S1). For these remaining inconsistencies, we adopted the ML topology, un-
less coalescent approaches provided a consistent contradicting topology,
which was observed only in the placement of Peltops and Calyptophilus (SI
Appendix, Figs. S2–S5). We used this “reconciled” topology for subsequent
divergence time, biogeographic, and diversification analyses.

Divergence Time Estimation.
Fossil calibrations. We followed best practices for justifying fossil calibrations
(28) to select and assign nine passerine and four nonpasserine fossils to
specific nodes of our reconciled topology (SI Appendix). To examine the
sensitivity of our date estimates to the inclusion or exclusion of particular
calibration points, we performed analyses with three sets of fossil calibra-
tions: set A, which included all 13 fossils; set B, which included a calibration
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at the root of the phylogeny, one at the split of passerines with parrots, and
five others at key passerine nodes; and set C, which included a single cali-
bration at the root (Fig. 3 and SI Appendix). We also investigated the effects
of prior distribution choice on our date estimates by performing dating
analyses using two prior settings for each set of calibration points (an
uninformative, uniform prior and a log-normal prior), and we examined
the robustness of age estimates for deeper nodes by performing one
analysis using an excessively old maximum age (80 Ma) with the log-
normal prior. We used dating results from analyses of log-normally dis-
tributed priors with a maximum age constraint of 56 Ma in subsequent
biogeographic and diversification analyses because, based on theoretical
and empirical considerations, the uncertainty regarding clade age is rep-
resented better by a continuously decreasing probability function rather
than discrete upper bounds (4, 89).
Approach. After selecting calibration points and defining priors, we took two
analytical approaches to divergence time estimation: (i) We analyzed small,
random subsamples of loci using BEAST, version 1.8.4 (90), and a more
complex model of sequence evolution, and (ii) we analyzed the concate-
nated dataset using MCMCTree (PAML, version 4.8 package) (91) and a
simpler model of sequence evolution. For both approaches, we fixed the
tree topology to the reconciled topology between ML and coalescent
analyses described above. Additionally, to ensure that among-lineage
rate variation was not affecting our date estimates, we analyzed a sub-
sample of the most clock-like UCE loci identified using SortaDate (92) and
input to BEAST. We checked each run for convergence of parameter
values and age estimates by inspecting traces and effective sample sizes
in Tracer, version 1.6.0 (93), and we compared divergence time estimates
between the two approaches by comparing them with each other and
with other studies (3–5, 19), using R, version 3.3.2, and the R package
ggplot2, version 2.2.1. We also generated joint prior distributions for
each analytical approach and each set of fossil calibrations by running the
analyses with no data (94).

Biogeographic Analysis.We examined broad patterns of avian dispersal across
the following major landmasses: North and Central America and the Ca-
ribbean (A, referred to as North/Central America); South America (B); Africa
and Madagascar (C, referred to as Africa); the Palearctic and Indomalaya east
to Wallace’s line (D, referred to as Eurasia); and Wallacea, Australia, New
Guinea, New Zealand, and the Pacific (E, referred to as the Australo-Pacific).
Using the R package BioGeoBEARS, version 0.2.1 (95), we compared ances-
tral area estimates using likelihood versions of the DEC model (96, 97) and the
DEC + j model (98) under two scenarios (SI Appendix, Table S3): one that
allowed dispersal between all areas and another that limited dispersal
to movement between adjacent areas. We also performed a series of
biogeographic analyses that included four fossil taxa to examine the ef-
fects of including closely related fossil taxa on ancestral area estimates of
major passerine lineages (SI Appendix, Figs. S8 and S9).

Diversification Rate Analysis. Because we were interested in understanding
whether passerine diversification was correlated with Cenozoic global
temperature (99), we estimated episodic diversification rates (100, 101) as
implemented in RevBayes, version 1.0.3 (102), using an empirical taxon
sampling strategy (103). We employed a reverse-jump Markov chain Monte
Carlo analysis between a model in which changes in the logarithm of spe-
ciation (and extinction) rates were proportional to changes in global tem-
perature (103) and a model that did not include global temperature as a
factor. We assessed model support using BFs (103).

To examine diversification rate shift configurations within passerines, we
generated 100 trees with diversities matching the number of extant pas-
serines (6,054 species) using code in R, version 3.3.2 (104), by replacing each
tip in our reconciled dated tree with a randomly generated phylogeny of
taxon size equal to the species diversity of the sampled tip. We estimated
lineage-specific diversification rates on each replicate tree using BAMM,
version 2.5.0 (105). To assess where shifts were best supported, we estimated
branch-specific marginal odds ratios, eliminated branches not found on the
original tree, and then calculated the median ratio for each remaining
branch across replicates (SI Appendix, Fig. S10).

Data Availability. Raw sequencing reads are available from the National
Center for Biotechnology Information (NCBI) Sequence Read Archive (NCBI
BioProjects PRJNA304409 and PRJNA480834), and UCE nucleotide sequences
are accessioned in the NCBI Genbank (Dataset S1). The PHYLUCE computer
code used in this study is available from https://github.com/faircloth-lab/
phyluce. Other custom computer code, DNA alignments, analysis inputs, and
analysis outputs are available from the Dryad Digital Repository (doi:10.5061/
dryad.2vd01gr) (106).
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