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Abstract

Molecular ecologists seek to genotype hundreds to thousands of loci from hundreds to thousands of individuals at

minimal cost per sample. Current methods, such as restriction-site-associated DNA sequencing (RADseq) and

sequence capture, are constrained by costs associated with inefficient use of sequencing data and sample prepara-

tion. Here, we introduce RADcap, an approach that combines the major benefits of RADseq (low cost with specific

start positions) with those of sequence capture (repeatable sequencing of specific loci) to significantly increase effi-

ciency and reduce costs relative to current approaches. RADcap uses a new version of dual-digest RADseq (3RAD)

to identify candidate SNP loci for capture bait design and subsequently uses custom sequence capture baits to con-

sistently enrich candidate SNP loci across many individuals. We combined this approach with a new library prepara-

tion method for identifying and removing PCR duplicates from 3RAD libraries, which allows researchers to process

RADseq data using traditional pipelines, and we tested the RADcap method by genotyping sets of 96–384 Wisteria

plants. Our results demonstrate that our RADcap method: (i) methodologically reduces (to <5%) and allows computa-

tional removal of PCR duplicate reads from data, (ii) achieves 80–90% reads on target in 11 of 12 enrichments, (iii)

returns consistent coverage (≥43) across >90% of individuals at up to 99.8% of the targeted loci, (iv) produces consis-

tently high occupancy matrices of genotypes across hundreds of individuals and (v) costs significantly less than

current approaches.
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Introduction

Massively parallel sequencing is changing molecular

ecology and other life science disciplines (Rogers &

Venter 2005; Tautz et al. 2010). While the costs of whole-

genome sequencing and genome resequencing have

declined, the time investment, cost and computational

complexity of genome assembly and genome resequenc-

ing remain significant drawbacks. Fortunately, many bio-

logical hypotheses can be tested with a fraction of the

genome, from several hundred to several thousand vari-

able loci (Cariou et al. 2013; Pante et al. 2015). Although

genome reduction techniques that collect data from hun-

dreds or thousands of loci are an appealing and

inexpensive proxy for whole-genome resequencing, the

matter of how best to collect genotypes from many loci

across hundreds or thousands of individuals remains

(Harvey et al. 2016).

Genome reduction techniques fall into a broad class

of so-called ‘reduced representation’ approaches, which

collect data from a small and repeatable fraction of the

genome across a population of individuals, enabling the

population under study to be compared at homologous

loci (Altshuler et al. 2000; Novaes et al. 2008; Wiedmann

et al. 2008). Sequence capture (Okou et al. 2007; Gnirke

et al. 2009) and restriction-site-associated DNA sequenc-

ing (RADseq; Miller et al. 2007; Baird et al. 2008; Davey

& Blaxter 2010; Davey et al. 2011; Peterson et al. 2012) are

two widely used types of reduced representation

approaches for massively parallel sequencing. Although

both methods have advantages and disadvantages

(Harvey et al. 2016), neither is entirely capable of
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achieving a primary goal of many population genetic

studies: consistently obtaining a set of hundreds or thou-

sands of putatively unlinked single-nucleotide polymor-

phisms (SNPs) from hundreds to thousands of

individuals at low cost (e.g. <$10/sample).

Sequence capture combines a custom set of long,

biotinylated, oligonucleotide baits with in-solution

hybridization to enrich any number of genomic regions

of nearly any size (Gnirke et al. 2009; Saintenac et al.

2011; Cao et al. 2013). Sequence capture requires prior

sequence information to design capture baits (Gnirke

et al. 2009). Several groups have designed bait sets that

target conserved sequences (Bi et al. 2012; Faircloth et al.

2012; Lemmon et al. 2012), which allow sets of baits to be

used across many species. Sequence capture is con-

strained by high library preparation costs, expensive

baits and randomness of where the collected sequences

start and stop, and off-target sequence reads (Harvey

et al. 2016).

RADseq methods reduce the genome by sequencing

many thousands of DNA fragments that are located near

restriction enzyme cut sites (Miller et al. 2007; Baird et al.

2008; Davey et al. 2011). Various RADseq derivatives

(Andrews et al. 2016) have been developed based on the

original RADseq method (Miller et al. 2007; Baird et al.

2008; Davey et al. 2011), including our 3RAD variant

(Graham et al. 2015), and we use the term ‘RADseq’ to

generically refer to any of the derivative forms of RAD-

seq. Compared to sequence capture, RADseq methods

generally have lower library preparation costs and do

not explicitly require genomic information from the taxa

of interest (Harvey et al. 2016; Heyduk et al. 2016).

The quality of RADseq data sets is often diminished

due to missing data from stochastic variation (mutation

and methylation) and molecular and bioinformatic pro-

tocols (see Mastretta-Yanes et al. (2015) for a review of

RADseq limitations). Errors introduced to RADseq

libraries during PCR are particularly problematic. Incor-

poration errors that occur early during the PCR reaction

can be amplified to high coverage as PCR proceeds (Tin

et al. 2015), and PCR duplication of loci can give falsely

high confidence in the accuracy of downstream variant

calls (Casbon et al. 2011; Schweyen et al. 2014; Tin et al.

2015). For example, many RADseq processing pipelines

use coverage to validate the accuracy of SNP calls even

though PCR duplicates can comprise 20–90% of reads in

RADseq libraries (Andrews et al. 2014; Schweyen et al.

2014; Tin et al. 2015; Ali et al. 2016).

The traditional approach for distinguishing duplicates

in standard genomic libraries, which are randomly

sheared on both ends, and RADseq libraries that are ran-

domly sheared on one end is to identify duplicate reads

as those having identical start and stop positions when

aligned to a reference sequence. However, this technique

cannot be applied to ddRAD-type approaches, where all

sequence reads from a RAD locus are identical (Andrews

et al. 2014). Single-molecule tagging has been employed

to identify and remove PCR duplicates in a variety of

approaches (Miner et al. 2004; Kivioja et al. 2012; Smith

et al. 2014), including RADseq and ddRAD, by incorpo-

rating degenerate bases in adapters (Casbon et al. 2011;

Schweyen et al. 2014; Tin et al. 2015), but all of the meth-

ods have limitations in their general implementation.

Here, we introduce RADcap, a novel method that

combines the benefits of single-molecule tagging with

3RAD and sequence capture to collect a consistent and

repeatable sample of hundreds of loci across hundreds

of individuals, remove PCR duplicates from the result-

ing data and call SNPs using a probabilistic base-call-

ing pipeline (GATK; DePristo et al. 2011; McKenna

et al. 2010). The RADcap workflow begins with a pilot

experiment using 3RAD to collect genetic information

from a small sample of individuals. After processing

the resulting sequence reads using STACKS (Catchen

et al. 2011, 2013) to identify variable RAD loci, the

workflow proceeds by designing a set of biotinylated

ssRNA baits targeting a subset of the variable RAD loci

and enriching the targeted loci from a pool of DNA

libraries prepared using our inexpensive 3RAD library

preparation process. To ameliorate the problem of false

confidence in genotype calls bolstered by PCR dupli-

cates, the RADcap approach incorporates a random 8-

nucleotide (nt) sequence tag in place of the iTru5 pri-

mer index (Fig. 1 and Fig. S1, Supporting information)

into each library molecule, which allows researchers to

distinguish PCR duplicates from unique template mole-

cules during postprocessing of the sequence data.

Finally, following a GATK workflow, we created a

RADcap data processing package, which calls SNPs in

the duplicate-free reads using a ‘radnome’ (those RAD

loci we targeted with capture baits) as a reference

sequence. We empirically tested the RADcap method

by measuring genetic diversity of 96 samples of Wiste-

ria collected across an urban centre as well as 203

greenhouse-grown seedlings.

Methods

Study system and experimental design

Wisteria is a genus of flowering plants in the family

Fabaceae that includes a number of woody perennial

climbing vines that reproduce sexually and vegeta-

tively (Valder 1995). In the southeastern United States,

two species of Wisteria, W. floribunda and W. sinensis,

were introduced from East Asia in the early 19th cen-

tury (Wilson 1916; Wyman 1949) as ornamentals. Most

individuals of introduced Wisteria growing in the
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southeast today are hybrids of W. sinensis and

W. floribunda (Trusty et al. 2007, 2008). While currently

available genetic markers can distinguish species, there

are no markers available with enough resolution to dis-

tinguish among individuals from the same population.

Understanding the population genetics of this intro-

duced species requires many more markers and is cru-

cial to understanding how Wisteria is spreading. We

compare estimates of genetic diversity of 96 wild-col-

lected samples from Athens, GA, obtained from RAD-

cap to genetic diversity of the same samples prepared

via 3RAD. We calculate the efficiency with which we

sequence these loci by also genotyping 203 greenhouse-

grown Wisteria seedlings (see Appendix S1, Supporting

information).

3RAD SNP discovery and bait design

We collected sequence information for sequence cap-

ture baits from a pilot 3RAD study of four individual

Wisteria plants: three samples collected around Athens,

GA (wist69-3, wist124-1 and wist276-4), and one sam-

ple collected from a greenhouse-grown seedling

(Wmat9-7-P5-S1). We prepared samples using 3RAD

(Graham et al. 2015), which we summarize below and

explain, in detail, in Appendix S1 (Supporting informa-

tion). We added short forward and reverse adapters

with inline barcodes to extracted DNA from each of

the four samples, and we performed a restriction digest

of this solution using XbaI, EcoRI-HF and NheI-HF

(Fig. 1; see Appendix S1, Supporting information, for

Fig. 1 The RADcap workflow illustrating components of the library molecule and the sequence of the ends of library molecules. Geno-

mic DNA is digested with enzymes that leave enzyme-specific sticky ends, to which we ligate adapters. The Read 1 adapter is com-

prised of four bases that bind to the XbaI restriction-site overhang (dark red), a sample-specific internal sequence tag, used to identify

the sample (orange), and a Read 1 sequencing primer that is partially single stranded to facilitate annealing of the iTru5 primer (purple).

The Read 2 adapter is a y-yoke adapter composed of the four bases that bind to the EcoRI restriction-site overhang (dark green), a sam-

ple-specific internal sequence tag (tan) and the Read 2 sequencing primer (red). During the one-cycle PCR, the iTru5 primer is added to

the library: the partial library is denatured, the primer anneals to the Read 1 sequencing primer overhang (purple), and extends, thereby

adding the degenerate barcode with 8 N bases (green) and the P5 primer (maroon) which anneals to the Illumina flow cell. After clean-

ing up the reaction, a limited cycle PCR is performed to add the iTru7 primer, comprised of the Read 2 sequencing primer (red) which

anneals to the single-stranded adapter added earlier, a sample-specific barcode (blue) and P7 primer (light green) which anneals to the

Illumina flow cell.
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enzyme selection). Following initial digestion, we

added T4 DNA ligase to the digested DNA without

disabling the restriction enzymes, and we cycled tem-

peratures to sequentially promote ligation of adapters

followed by digestion of chimeras and dimers. Chi-

meras and dimers are preferentially digested because

they re-create the enzyme cut site, whereas adapters

ligated to target DNA do not. We cleaned the resulting

reactions with NaCl-PEG diluted SpeedBeads (Rohland

& Reich 2012), and we completed the adapter

sequences using PCR with iTru5 and iTru7 primers

(see Glenn et al. (2016) for details about primers). We

pooled the resulting libraries, size-selected fragments of

550 bp (�10%) with a Pippin Prep (Sage Science, Inc.),

and performed a final round of low-cycle PCR using

the P5 and P7 primers to increase the concentration of

fragments in the desired size range. We sequenced

samples on an ILLUMINA NEXTSEQ v2 300 cycle kit to

obtain paired-end 150-nt (PE150) reads (Fig. S1, Sup-

porting information).

In 3RAD (and RADcap) libraries, the forward and

reverse adapters with internal indices are used to distin-

guish samples, and the iTru7 primer is used to distin-

guish plates. We used the process_radtags program in

STACKS v1.29 (Catchen et al. 2011, 2013) to clean and

demultiplex the resulting sequence data. We ‘rescued’

sequence tags and RAD tags within 2 bp of their

expected sequence; otherwise, we removed reads with

an uncalled base or containing the wrong adapter or

wrong cut site. Because our 3RAD adapter sequences

vary in length, and because STACKS requires all reads to

be the same length, we used process_radtags to truncate

reads to 140 bp, removing 0–3 bases of sequence per

read. We parallel-merged the mates of paired-end reads

(paste command in Unix). We ran the STACKS pipeline

with the following modifications: in the ustacks pro-

gram, we removed highly repetitive stacks, we used the

deleveraging algorithm, and we set the maximum dis-

tance between stacks (M) to 3; in the cstacks program,

we set the number of mismatches allowed between sam-

ple tags when generating the catalog (n) to 4; in the pro-

gram populations, we required at least three individuals

to have reads to retain a given locus (r), and we set the

minimum stack depth required for individuals at a locus

(m) to 3. We output the full sequence from each allele

identified across our pilot samples in FASTA format. We

selected loci that were polymorphic, but had less than

five SNPs across both paired-end reads and that were

present in three or four of the samples, which resulted in

1740 paired reads (candidate loci) for bait design.

We selected bait sequences to minimize target redun-

dancy and bait-to-bait hybridization, which can compro-

mise the synthesis of ssRNA baits as well as the target

capture hybridization reaction. To perform these steps,

we subjected sequences to self-analysis using BLAST 2.2.19

(filter query sequence = false, word size = 11, e-value = 1e-13,

number of sequences to show alignments for = 2000; Boratyn

et al. 2013). We discarded any locus with one or both

sequences having a BLAST hit of at least 140 bp to another

sequence (682 loci). Next, we subjected sequences to a

same-strand self-analysis in BLAST (as above, query

strand = bottom). We discarded 94 additional loci in

which one or both paired sequences had a BLAST hit to

another sequence, leaving 964 loci. Then, we designed

two sets of 90 mer baits targeting these 964 loci. In the

first set, we chose a single bait from both mates of

paired-end sequences for every locus, and we positioned

baits to start at the 20th base of their parent sequences

(creating 1928 Wisteria baits, 2 per locus; Appendix S2:

Wist-Probes-Set1.fasta, Supporting information). In the

second set, we added additional baits from both

sequences corresponding to a random subset of 200 loci

(creating 400 additional baits; Appendix S3: Wist-Probes-

Set2-SUBSET-400.fasta, Supporting information), and we

positioned these baits to start at the 40th base of their

parent sequences. The two sets produced a total of 2328

baits targeting 964 Wisteria library molecules. To reduce

synthesis costs, we combined this bait set design with a

similar number of baits designed in the same way for

another species (Pueraria montana var. lobata, kudzu; see

Discussion). We subjected the bait sequences for both

species to a final same-strand self-analysis using BLAST

(same process as above), and we did not find evidence of

additional bait-to-bait hybridization. Before bait synthe-

sis and because MYbaits cannot be synthesized with a

mixture of bases, we replaced any variable positions in

any bait sequence with a random candidate base, and we

replaced all unknown (‘N’) positions with a thymine. We

created a custom set of biotinylated RNA baits by having

them synthesized as a MYbaits-1 kit (MYcroarray, Ann

Arbor, MI, USA).

Library preparation, experimental treatments and
sequencing

We provide detailed sample collection and sample

preparation methods in Appendix S1 (Supporting infor-

mation). Briefly, we randomly arranged 191 of the 202

greenhouse-grown Wisteria samples in two plates (RAD-

cap_Plate1 and RADcap_Plate2; Table S1, Supporting

information) with one sample included on both plates.

We placed the remaining 11 greenhouse-grown samples

into a third plate, along with four samples that are dupli-

cated and 41 samples that are triplicated from plates 1

and 2 (RADcap_Plate3; Table S1, Supporting informa-

tion). This arrangement allowed us to reprocess 133

libraries independently prepared from the same

extracted DNA, and we used these replicates to compute
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the amount of missing data between replicate samples

that was not caused by genetic variation. We arranged

the 192 samples from wild-collected individuals by DNA

concentration in a fourth and fifth plate (RADcap_Plate4

and RADcap_Plate5; Table S1, Supporting information).

We normalized DNA concentration across plates, then

we digested the plated DNA with XbaI, NheI-HF and

EcoRI-HF in a reaction that included forward and

reverse adapters. As before, we added T4 DNA ligase to

the digested DNA without disabling the restriction

enzymes, and we cycled temperatures to sequentially

promote ligation of adapters followed by digestion of

chimeras and dimers (Fig. 1; see Appendix S1, Support-

ing information, for enzyme selection). Following adap-

ter ligation, we combined approximately 33% of the

ligation volume from each sample in each plate into

plate-specific pools, we cleaned each pool with Speed-

Beads, and we resuspended cleaned pools in 33 lL of

TLE. For plates 1–4, we split each pool into three aliquots

of 20 lL, 10 lL and 3 lL, and we used these aliquots to

test the effect of different PCR conditions on the effi-

ciency of RADcap (described below; Table 1). To tag and

track duplicate reads that resulted from the PCR amplifi-

cation process, we designed a new iTru5 (Glenn et al.

2016) primer that incorporated a random 8 nt sequence

tag (i.e., the i5 index sequence was specified as

NNNNNNNN when ordering the iTru5-8N primer).

This resulted in the synthesis of a mixture of 65 536

iTru5 primers with unique 8 nt index sequences. In the

experimental treatments, below, we incorporated these

uniquely tagged iTru5-8N primers in to our DNA library

constructs using different PCR conditions to determine

what methods produce the fewest PCR duplicates.

Treatment 1: One-primer, one-cycle amplification. Following

adapter ligation and cleaning, we split each 20 lL aliquot

into two tubes to increase the total PCR volume possible,

and we performed a single-cycle, one-primer PCR

(Fig. 1). Each reaction contained 10 lL template DNA

and the iTru5-8N primer. Because we amplified each

reaction using only one cycle, the primers did not dena-

ture from the library molecules and re-anneal to different

library molecules. We pooled the two resulting reactions

and cleaned them with SpeedBeads, and we split them

into two tubes for a 6-cycle PCR where we included the

P5 primer and the plate-specific iTru7 primer (Table S2,

Supporting information). This second reaction completed

the library construct, added the plate-specific i7 index

sequence to each library construct and increased the total

amount of library available for capture. We called the

plates in this treatment RADcap_1cycle_Plate1–4.

Treatment 2: Two-primer, five-cycle amplification. For the

aliquots of 10 lL, we performed four PCRs for each

pooled plate with 2 lL template DNA in each. We

included both the iTru5-8N primer and the iTru7 primer

(Table S2, Supporting information) in each PCR, and we

ran PCR for five cycles. Because we included the iTru5-

8N primer in the PCR reaction for multiple cycles, newly

synthesized molecules could receive new iTru5 tags

(Casbon et al. 2011), and thus, a single template DNA

molecule could generate multiple library constructs with

unique i5 sequence tags (i.e. this method produced ≤10
undetectable PCR duplicates per template molecule).

Because we used libraries in these treatments that were

identical to those used above (i.e. one-primer amplifica-

tion with a single-cycle PCR), this experiment allowed us

to determine the effect of low-efficiency first-strand repli-

cation and test how additional PCR cycles affect the

identification of PCR duplicates and subsequent variant

calling. We called the plates in this treatment RADcap_5-

cycle_Plate1–4.

Treatment 3: Low-template, one-primer amplification. It is

thought that using less template DNA can exacerbate

the problem of PCR read duplication (Casbon et al.

2011). We used the 3 lL aliquot from plate 1 to deter-

mine the effect of low DNA concentrations on PCR

duplication and subsequent variant calling. We added

the iTru5-8N primer to 3 lL of template from plate 1,

Table 1 Overview of PCR conditions for each treatment, DNA plates in each treatment and how plates were grouped for analyses

Treatment Name Plate IDs

Cycles with

iTru5-8N

iTru5-8N reaction

volume (lL)

All PCR

duplicates

tagged? Captured?

Analysis groups

(plate ID’s)

1 RADcap_1cycle 1–4 1 100 Yes Yes 1; 1–4
2 RADcap_5cycle 1–4 5 100 No Yes 1; 1–4
3 RADcap_Low_Template 1 1 25 Yes Yes 1

4 RADcap_optimized 5 1 300* Yes Yes 5

5 3RAD_SizeSelect 5 1 300* Yes No 5

*The iTru5-8N reaction volume for the size-selected and optimized treatment represents the same reactions, as these treatments were

split after the single-primer PCR and clean-up.
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and we a performed a single-cycle PCR. As we

described for the one-primer amplifications above, we

cleaned the resulting PCR product and performed

another six-cycle PCR to add the iTru7 primer

(Table S2, Supporting information). We called this

treatment RADcap_Low_Template_Plate1.

RAD locus capture. Following all final PCRs described

above, we pooled the replicate PCRs, cleaned each plate

pool with SpeedBeads and performed a separate capture

hybridization reaction on each pool from each treatment

(three plates with two treatments and one plate with

three treatments, for nine total captures) according to the

MYcroarray MYbaits v3.0 protocol, with a hybridization

temperature of 65 °C for 21 h. Following capture, we

split each capture into three tubes and amplified loci

with the P5 and P7 primers in an 18 cycle PCR recovery.

PCRs from each capture were pooled and cleaned with

SpeedBeads. Following PCR and clean-up, we quantified

the nine experimental treatments, and we pooled these

libraries with unrelated libraries from other experiments

at a ratio that would return 20% of the reads from an Illu-

mina sequencing run (Fig. S3, Supporting information).

We sequenced the pooled libraries using an ILLUMINA

NEXTSEQ HIGH OUTPUT v2 150 cycle kit to achieve PE75

reads (Fig. S1, Supporting information).

Treatments 4 and 5: Optimized RADcap vs. size selec-

tion. After sequencing, the data from plates 1–4 included

eight loci with an average coverage 209 higher than

other loci in the one-primer treatment, 109 higher than

other loci in the two-primer treatment and 289 higher

than other loci in the low-template treatment. To block

the overenrichment of these loci, we designed and

ordered 29 custom oligonucleotides (Table S3, Support-

ing information) between 26 and 60 bp long that were

complementary to the baits targeting these eight loci and

which had a DNA to RNA Tm >70 °C. We also optimized

the PCR for plate 5, based on the one-primer treatment

above, by increasing reaction volumes threefold for the

PCR to add the iTru5-8N primer and 1.3-fold for the PCR

to add the iTru7 primer, and we included the locus-spe-

cific bait blockers during the hybridization reaction. To

compare the results of capturing RAD loci to those of

size selection normally performed in 3RAD (and other

RADseq protocols), we split the plate 5 pool in half fol-

lowing the one-primer PCR and SpeedBead clean-up,

and we captured loci from one-half as described above.

We called this treatment RADcap_optimized_Plate5. We

size-selected the remaining half of the plate 5 pool as

described above. We called this treatment 3RAD_Size-

Select_Plate5. We pooled these two libraries with unre-

lated libraries to obtain 7% of the reads on a second

ILLUMINA NEXTSEQ run (Fig. S3, Supporting information)

using conditions described above for the other RADcap

libraries.

Data analysis

Modification of STACKS software. STACKS (Catchen et al. 2011,

2013) had previously been modified to identify the vari-

able-length internal tags that distinguish individual sam-

ples in 3RAD data. However, no software program

existed to properly identify and remove the PCR dupli-

cates from RADseq data. We developed new code as part

of the clone_filter module within STACKS v1.35 to remove

PCR duplicates. Clone_filter can be used before or after

process_radtags and can use any combination of inline or

index sequence tags, in addition to using read sequences,

to reduce duplicated reads to a single representative in

the output. Importantly, clone_filter does not modify

FASTQ headers, allowing repeated use of process_radtags

and clone_filter for read demultiplexing and duplicate

removal.

Data processing. After sequencing, we converted BCL files

to FASTQ format using BCL2FASTQ2 v2.16.0.10 (Illumina,

Inc.), and we modified the default parameters to create

a separate FASTQ file for index reads (Fig. S1 and Appen-

dix S4: Example_scripts.md, Supporting information).

We demultiplexed and removed PCR duplicates from

the FASTQ data using STACKS v 1.35. First, we demulti-

plexed reads originating from different plates by iTru7

tag (Table S2, Supporting information) using pro-

cess_radtags. We discarded reads with an uncalled base,

reads having low quality (using default settings) or

reads having a sequence tag or RAD tag more than two

bases distant from the expected sequence. We rescued

reads having sequence tags or RAD tags within two

bases of the expected sequence. This initial demultiplex-

ing produced paired-end files corresponding to each

plate in each treatment. We ran process_radtags again on

each plate of samples, with the same parameters, to

truncate reads to 64 bp and demultiplex reads by inner

adapter, which produced paired-end files for each indi-

vidual in each plate. Finally, we used the clone_filter

program to remove any read having the same combina-

tion of random iTru5 tag and RAD sequence, which

probably represent duplicates created during PCR

amplification.

We created a FASTA-formatted ‘radnome’ file that

contained the 964 paired sequences from which we

designed baits, and we used this file as a reference

sequence for read alignment and SNP calling

(Appendix S5: wisteria_reference.fasta, Supporting

information). Within this FASTA file, paired reads were

separate entries given arbitrary locus names, and we

inserted 20 Ns between the sequences for Read 1 and
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Read 2. We aligned RADcap reads to the reference

using BWA v 0.7.7 (Li & Durbin 2009) with the mem

algorithm and shorter split hits marked as secondary

(M), and we called SNPs using an automated pipeline

(https://github.com/faircloth-lab/radcap) that incorpo-

rates BWA, PICARD and the open-source GATK-LITE package

(McKenna et al. 2010; DePristo et al. 2011). Following

automated BWA alignment, the pipeline merged individ-

ual alignments, re-aligned BAM files around indels,

called SNPs and indels, and filtered problematic or

low-quality SNP calls from the total set of raw SNP

calls to create a passing file of SNPs.

Variant calling is an inherently population-based pro-

cess in that errors can be distinguished from variants at a

specific position by considering that position in all indi-

viduals in the population (Craig et al. 2008; Bansal et al.

2010; Catchen et al. 2011). Therefore, the detection and

statistical properties of variant genotypes are dependent

on how the population under study is sampled, with

fewer variant sites recovered with lower statistical sup-

port from smaller populations. To mimic this effect of

population sampling and to facilitate comparisons

among our experimental treatments, we called SNPs in

two ways. First, we treated all 384 individuals from

plates 1–4 as a single population, and we called SNPs

separately in each of the one-primer (n = 384 individu-

als) and two-primer experimental treatments (n = 384

individuals). Second, we treated the 96 samples in plate

1 as a single population, and we called SNPs for the plate

1 population in the one-primer, two-primer and low-

template treatments, as well as the plate 5 optimized and

size-selected treatments (Table 1). After SNP calling, we

filtered the resulting VCF files using VCFTOOLS v0.1.12b

(Danecek et al. 2011) to exclude sites with more than

50%, 20% or 10% missing data (i.e. 50%, 80% or 90%

complete data), and we computed summary statistics

across captured loci and variant sites using a program

from the RADCAP software package (Appendix S4: Exam-

ple_scripts.md, Supporting information).

RADcap assessment. Because PCR can be biased by the

composition of certain primers, we wanted to estimate

how well our iTru5-8N primers were incorporated into

our library constructs. Using the FASTQ file of index reads

as input, we determined the count of each iTru5-8N

sequence tag using FASTX v0.0.14 (Gordon & Hannon

2010; Appendix S4: Example_scripts.md, Supporting

information). We plotted the cumulative count of iTru5-

8N sequence tags incorporated to DNA libraries for all

possible sequence tag combinations, except for iTru5-8N

tags that do not return a signal on the NEXTSEQ

(GGGGGGGG), those DNA inserts that have no apparent

i5 sequence tag (AGATCTCG) and those iTru5 sequence

tags of other libraries on the sequencing run.

We expected sequence capture to be more efficient

than size selection and that the resulting data from cap-

tured RAD loci would include fewer off-target reads,

have higher coverage at target loci, and consistently

recover a larger number of target loci from reads. To

investigate these parameters, we computed the coverage

of each position in each sample from BAM files using SAM-

TOOLS v1.2 (Li et al. 2009; Appendix S4: Example_-

scripts.md, Supporting information). For this analysis,

we used the BAM files produced directly from BWA to

avoid effects of the BAM re-alignment on our coverage

computations and because we wanted to assess which

loci were present in the data set (where coverage of loci

in the radnome reference was >0), despite being

monomorphic or having errors. We report the average

coverage for bases 32 and 190 of each reference locus,

representing the middle base of Read 1 and Read 2, in all

samples within each plate, normalized by million reads

per sample. To determine whether the variation in cover-

age between loci in a treatment decreased in the opti-

mized treatment, we plotted the log-transformed

coverage of each locus and tested whether the optimized

treatment had less variation in log-transformed coverage

using a one-sided Siegel-Tukey test for equality in vari-

ability with adjusted medians in DESCTOOLS (Signorell

2015) in R. We then calculated the average coverage per

locus per million reads per sample for loci with at least

49 coverage in plates RADcap_1cycle_Plate1, RADcap

_5cycle_Plate1, RADcap_Low_Template_Plate1, RADcap

_optimized_Plate5, and 3RAD_SizeSelect_Plate5. As a

measure of consistency and to see whether the same loci

were recovered in each treatment, we identified the loci

with at least 49 coverage in 90% of samples from each

treatment and determined the loci in common between

treatments using VENNDIAGRAM (Chen & Boutros 2011) in

R (Appendix S6: Venn_diagram_code.R, Supporting

information). In addition, we plotted the density kernel

of the coverage for Read 1 and Read 2 for each of the five

treatments and compared the distributions of coverage

between treatments in a one-sided two-sample Kol-

mogorov–Smirnov test in R. We compared coverage of

loci targeted by 4 baits to coverage of loci targeted by 2

baits at base 32 and 190 by performing a t-test.

To determine how many reads were necessary to

recover all of the targeted loci at reasonable coverage, we

plotted the number of loci at or above 49 coverage and

the number of reads for each sample. To estimate cover-

age at lower read numbers, we took the median coverage

for all samples at each locus and divided that to get cor-

responding coverage between 1000 and 250 000 reads

per sample. We plotted the number of loci at or above

49, 109 and 209 coverage as a function of the reads per

sample. We calculated the frequency of missing data

between replicate samples within the one-primer and
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two-primer treatments by converting VCF output files to

GENEPOP format in PGDSPIDER v. 2.0.9.1 (Lischer & Excoffier

2012) and counting the number of SNPs at which one

sample had a base called while another did not. Because

there were no replicate samples within plate 5, we could

not assess the amount of missing data. Instead, we com-

pared estimates of genetic diversity of Wisteria in plates

RADcap_optimized_Plate5 and 3RAD_SizeSelect_Plate5

from 80% filled matrices in GENALEX v6.502 (Peakall &

Smouse 2006, 2012). For each plate, we report the aver-

age number of samples genotyped (of 96) across all loci,

the number of alleles identified, the effective number of

alleles, Shannon’s Information Index, the observed and

expected heterozygosity and the fixation index, along

with standard error estimates for each parameter.

Results

Initial 3RAD SNP discovery for bait design

Following SNP discovery using four Wisteria samples,

we obtained 1.4–2.5 million PE150 reads per sample, and

we retained an average of 83.7% of reads after quality fil-

tering. We identified 31 686 STACKS catalog loci, 1350 of

which were sequenced in all four samples, and 3483 of

which were sequenced in three samples. Of the loci

recovered in at least three samples, 2573 loci were poly-

morphic and contained a total of 6531 variant sites. After

filtering these loci, there were 1428 putative variants in

the 964 loci we used to design our capture baits.

Random tagging at the i5 index position allows removal
of PCR duplicates

For the RADcap samples in plates 1–5, we obtained

3–40 million reads per plate (average 17 million), and

we retained >94% of reads after quality filtering

(Table 2). This left an average of 85 000 reads per sample

for plates other than 3RAD_SizeSelect_Plate5, RADcap_

5cycle_Plate3 and RADcap_Low_Template_Plate1

(which had 200 000, 11 000 and 16 000 reads per sample,

respectively; Fig. S3 and Table S4, Supporting informa-

tion). We incorporated and sequenced all 65 536 of the

expected iTru5 random sequence tags in both of the ILLU-

MINA NEXTSEQ runs performed to generate our data

(Fig. S2, Supporting information). All plates from which

we collected data using RADcap had a similar per cent

of reads retained after quality filtering by process_radtags

in STACKS (Table 2). We retained an average of 68.9% of

reads after decloning (range 20.4–95.7%; Tables 2 and S4,

Supporting information), with the most reads retained

from the optimized PCR protocol (which we performed

on RADcap_optimized_Plate5 and 3RAD_SizeSelect_

Plate5) and RADcap_5cycle_Plate3.

Optimizing RADcap efficiency and coverage

All but one of the capture treatments yielded ≥80% of

reads on target (Table 2), while the optimized treatment

(RADcap_optimized_Plate5) yielded the highest propor-

tion of reads on target (90%). More traditional 3RAD

with size selection (3RAD_SizeSelect_Plate5) yielded

15% of reads on target. Similarly, the optimized and two-

primer treatments had the highest average coverage, at

928 and 942 reads per locus per million reads per sam-

ple, respectively (Table 2), but we note that the two-pri-

mer coverage is inflated with undetected duplicate

sequences from multiple rounds of PCR. The one-primer

and low-template treatments had slightly lower average

coverages, at 783 and 629 reads per locus per million

reads per sample, respectively. The size-selected treat-

ment had the lowest average coverage at 155 reads per

locus per million reads per sample.

The coverage per locus per million reads was much

higher among the RADcap samples than traditional

3RAD size-selected samples (Fig. S4, Supporting infor-

mation). The variation in coverage per locus per million

reads sequenced per sample was lower for RADcap_op-

timized_Plate5 than 3RAD_SizeSelect_Plate5 and

RADcap_1cycle_Plate1 (Siegel–Tukey test, d.f. = 963,

P < 0.0083 in both cases; Fig. S4, Supporting informa-

tion), despite loci targeted by four baits having a signifi-

cantly higher coverage than loci targeted by 2 baits in

RADcap_optimized_Plate5 (1086 and 886, respectively; t-

test with equal variances, t = 4.61, d.f. = 1926,

P = 2.1 9 10�6). The variation in coverage for the

RADcap_optimized_Plate5 did not differ from the

RADcap_5cycle_Plate1 or the RADcap_Low_Tem-

plate_Plate1 (Siegel–Tukey test, d.f. = 963, P > 0.37 in

both cases) even though loci targeted by four baits had

higher coverage than loci targeted by two baits in

RADcap_5cycle_Plate1 (1105 and 900, t-test with

unequal variances, t = 3.50, d.f. = 913, P = 2.4 9 10�4).

Average coverages between loci with two and four baits

did not differ in RADcap_Low_Template_Plate1,

RADcap_1cycle_Plate1, and 3RAD_SizeSelect_Plate5.

The increased performance of RADcap is also apparent

when the coverage per locus is plotted as a density dis-

tribution (Fig. S5, Supporting information).

RADcap effectively and consistently enriched target loci
and produces dense SNP matrices

We consistently recovered more targeted loci within

RADcap treatments than traditional 3RAD with size

selection after analysis with GATK (Fig. 2a; Table S5,

Supporting information). Specifically, the optimized

treatment performed the best, with 912 loci recovered at

50% matrix occupancy, 880 recovered at 80% occupancy
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and 820 recovered at 90% occupancy. The 96 samples

analysed from the one-primer and two-primer treat-

ments performed slightly poorer, with 840 and 874 loci

recovered at 50% matrix occupancy, 697 and 823 loci

recovered at 80% matrix occupancy and 552 and 764 loci

recovered at 90% matrix occupancy, respectively. Tradi-

tional 3RAD with size selection returned 821, 642 and

510 loci at the same levels of matrix occupancy. As

expected, RADcap_Low_Template_Plate1 showed the

poorest performance, returning 730, 338 and 155 loci at

the same levels of occupancy. The number of SNPs called

within loci showed similar patterns (Fig. 2b), with

RADcap_optimized_Plate5 performing better than all

other treatments. The effects of population size on the

number of SNPs called are apparent in the differences

we observed between RADcap_5cycle_Plate1 and

RADcap_5cycle_Plate1–4 and between RADcap_1cy-

cle_Plate1 and RADcap_1cycle_Plate1–4.
Another important metric for most researchers is the

consistency with which reduced representation

approaches collect data across plates or from all individ-

uals in a population. In a 90% filled matrix of loci with

49 or higher coverage, more than half of the loci (516 of

964; 54%) were shared between all treatments except low

template, an additional 286 loci (30%) were shared

among all three RADcap treatments, and an additional

125 loci (13%) were shared among the RADcap_

5cycle_Plate1, RADcap_optimized_Plate5 and 3RAD_

SizeSelect_Plate5 (Fig. S6, Supporting information).

Impressively, RADcap_optimized_Plate5 contained data

at 49 coverage for 962 of the 964 loci (99.8%; Fig. S6, Sup-

porting information). Solely 36 loci (3.7%) were present

in only one or two treatments (Fig. S6, Supporting infor-

mation). Thus, most loci were present in most samples

regardless of which treatment they originated.

In both RADcap_optimized_Plate5 and RADcap_5cy-

cle_Plate1, we recovered most of the 964 loci in most

samples regardless of the sequencing depth (Fig. 3). By

comparison, in the size-selected treatment, even samples

with the largest number of reads did not include as

many loci as these RADcap treatments. When we mod-

elled a reduced number of reads over all samples for

each locus in the optimized treatment, we found that

20 000–30 000 reads were sufficient to capture all loci

with at least 49 coverage, and 60 000 reads per sample

were sufficient to achieve 109 coverage at all loci (Fig. 3).

To achieve 209 or higher coverage at all loci, we esti-

mated that ≥200 000 reads per sample were required.

Table 2 The total reads per plate, per cent retained after quality filtering, per cent retained in paired and ‘remainder’ files after declon-

ing, per cent mapped and the average coverage per million reads sequenced per sample of base 32 and 190 of each locus

Plate Number of reads

% Retained after

quality filtering

% Retained after

decloning

% Reads that map

to reference Average coverage

RADcap_1cycle_Plate1 19 397 440 94.9 25.1 79.6 783

RADcap_1cycle_Plate2 14 703 752 95.0 20.4 85.7 –
RADcap_1cycle_Plate3 15 865 294 94.8 67.2 81.5 –
RADcap_1cycle_Plate4 17 907 048 95.0 63.3 83.8 –
RADcap_5cycle_Plate1 18 045 032 95.0 83.3 84.8 942

RADcap_5cycle_Plate2 17 968 264 95.0 86.9 85.5 –
RADcap_5cycle_Plate3 2 332 154 94.1 95.7 84.3 –
RADcap_5cycle_Plate4 18 455 900 95.1 86.1 84.1 –
RADcap_Low_Template_Plate1 3 285 096 95.3 41.0 65.8 629

RADcap_optimized_Plate5 17 929 096 95.5 94.2 90.1 928

3RAD_SizeSelect_Plate5 39 543 602 95.9 94.8 15.1 155
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Error rate and genetic diversity of Wisteria

The amount of missing data in samples replicated within

a treatment was effectively equal between one-primer

and two-primer treatments (7.20% and 7.61%, respec-

tively). Because the optimized and size-selected treat-

ments had the same samples and were filtered to have

the same occupancy, we show the effect of estimating

diversity with a smaller data set. In the 80% occupancy

matrices, we recovered 3744 SNPs in the optimized treat-

ment and 2554 SNPs in the size-selected treatment. On

average, two more samples were genotyped in the opti-

mized treatment than size-selected treatment for each

SNP (Table S6, Supporting information). The number of

alleles, number of effective alleles per SNP and

Shannon’s Information Index were higher for size-

selected samples than optimized samples (2.018, 1.159

and 0.184, respectively, for size-selected and 2.014, 1.143

and 0.169, respectively, for optimized samples). FIS was

higher for size-selected samples than optimized samples

(0.227 and 0.180, respectively). Although observed

heterozygosity was the same, expected heterozygosity

was higher for size-selected samples (0.104 vs. 0.095 for

optimized samples; Table S6, Supporting information).

Discussion

RADcap represents a significant improvement to current

reduced representation library approaches by efficiently

sampling a consistent portion of the genome from large

numbers of individuals at low cost (Table 3). Our opti-

mized protocol achieves ≥49 coverage for ≥90% of sam-

ples at 99.8% of targeted loci with <187 000 reads per

sample. However, only 20 000 reads per sample would

be necessary for this matrix occupancy in the optimized

treatment. Although a cut-off of 49 coverage is com-

monly used (Catchen et al. 2013; Pegadaraju et al. 2013;

Graham et al. 2015; Mastretta-Yanes et al. 2015; Ali et al.

2016), it is well known that 49 coverage will often lead

to inaccurate genotypes and that deeper sequencing is

needed for consistent and accurate genotyping (DePristo

et al. 2011; Sims et al. 2014). Fortunately, RADcap is suffi-

ciently efficient that 10–209 coverage can be obtained for

90% complete matrices with affordable amounts of

sequencing. This lower sequencing depth provides simi-

lar measures of genetic diversity as RADseq, but with

higher confidence, because we sample loci more consis-

tently and deeply.

Initial 3RAD SNP discovery and bait design

STACKS performed well for the task of identifying SNPs

and polymorphic loci from pilot 3RAD samples—using

four individuals for initial SNP discovery yielded 2573

polymorphic loci, higher than our goal of 2000 loci from

which to design baits. However, using a small sample

size limited our ability to identify polymorphic loci that

result from biological variation relative to those that arose

from sequencing errors, and we probably failed to detect

rare alleles due to ascertainment bias (Nielsen 2000; Clark

et al. 2005). For future RADcap projects, we recommend

using 16–96 individuals for SNP discovery. Another con-

straint of our current approach is that the pilot-scale

3RAD experiment requires a significant amount of time

to complete, including several weeks to synthesize baits.

If a genome sequence is available for the focal organism,

the genome could be digested in silico and loci with

mapped SNPs could be used for bait design.

Random tagging at the i5 index position allows removal
of PCR duplicates

We used the iTru5-8N tag to successfully remove PCR

duplicates from our data using new additions to the
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Fig. 3 The number of loci recovered at

different depths of sequencing coverage

for RADcap and 3RAD library prepara-

tions. The points represent the number of

loci sequenced to ≥49 coverage in each

sample relative to the number of reads

sequenced for that sample. The lines rep-

resent the number of loci that should be

recovered with the optimized treatment

at various read depths for a minimum

coverage of 49, 109 and 209.
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STACKS codebase. Although there are 48 = 65 536 possible

iTru5-8N sequence tags for each locus, false duplicates

(i.e. independent DNA molecules with the same iTru5-

8N sequence tag) will be encountered at much lower

coverage (McKinney 1966; Schweyen et al. 2014). The

number of iTru5-8N sequence tags that we used to iden-

tify duplicates is much larger than tag pools used in the

past (e.g. Schweyen et al. 2014; Tin et al. 2015), allowing

more than sufficient depth of coverage after duplicate

removal. The approach we created also does not require

researchers to anneal complementary oligos within a

large pool of oligos containing degenerate tags (cf. Sch-

weyen et al. 2014), which will produce a preponderance

of double-stranded adapters with mismatches.

While our approach is simple and powerful, it is con-

strained by an upper limit of 65 536 possible iTru5-8N

sequence tags. Thus, the method we implemented in

STACKS uses the iTru5-8N sequence plus the correspond-

ing read sequence to define duplicates—otherwise

≤65 536 reads would be retained from any library. In

addition, it is critical to use conditions that promote high

efficiency of first-strand synthesis (i.e. our optimized

treatment, and not the one-primer, two-primer or low-

template treatments) to avoid high levels of PCR dupli-

cation. Finally, STACKS is the only software we have exten-

sively tested to remove duplicates from these types of

data, although IPYRAD recently added similar support

functions (ipyrad.readthedocs.io).

Casbon et al. (2011) found that reduced numbers of

template molecules going into PCR increased the rate of

PCR duplication. In contrast, our treatment with the least

amount of input DNA, RADcap_Low_Template_Plate1,

had fewer duplicates than RADcap_1cycle_Plate1. Thus,

the specific conditions used for first-strand extension are

critical to producing a diverse RAD library and can be

even more important than the amount of template used.

The low-level of duplicates in the size-selected and

optimized protocols (which have only one cycle of first-

strand extension) demonstrates that high levels of dupli-

cates are not inevitable and that careful optimization of

reaction conditions can keep duplicates to quite low pro-

portions. However, the only way to know what percent-

age of the reads are duplicates is to implement a strategy

to detect duplicates, which also facilitates their removal.

Thus, tagging and removing duplicates is prudent for all

RADcap and RADseq experiments.

Optimizing RADcap efficiency

Our modifications of the one-primer treatment to the

optimized (also single-primer) treatment included

increasing the PCR volume and adding locus-specific

bait blockers for the eight loci that were overabundant in

the first set of RADcap reads. These modifications

decreased the variation in coverage among loci and

increased the number of loci we recovered. The bait

blockers had a modest effect (the reads attributed to the

blocked loci decreased from 14.7% in the one-primer

treatment and 8.1% in the two-primer treatment to 3.6%

in the optimized treatment). Thus, we surmise that

increasing the PCR volume used for first-strand synthe-

sis was far more important. Because we tested the one-

primer and two-primer treatments on plates 1–4 and the

increased PCR volume using plate 5, it is unclear

whether the increased volume of the PCR decreased the

rate of PCR duplication or whether the initial quality of

Table 3 Major processes and reagents of RADcap, costs for this study and potential improvements to reduce costs and/or increase

throughput

Reagent cost ($US) Alternatives and potential improvements

Process*

Isolating DNA 2.00 Speed-bead based DNA isolation

Normalizing DNA 0.20 Robots, Sequal-Prep or similar

Digesting DNA & Ligating Adapters 1.00 Reduce amount of enzymes used

Single cycle degenerate iTru5 0.20

Size selection (SNP discovery) 1.00† SpeedBeads or gel-cut

NEXTSEQ PE150 (SNP discovery) 21.20† HiSeq PE100–PE150
Sequence capture 1.20 –
NEXTSEQ PE75 1.20

RADcap genotyping total per sample 5.80

Major reagents‡

MYcroarray MYbaits 2400.00§ Single bait per locus, increase

number of projects pooled for baits

3RAD adapters 370.00† Purchase aliquots or share

iTru primers 345.00† Purchase aliquots or share

*Calculated on a per-sample basis and assumes full 96-well plates; ‡Batch cost per project; §Included or †excluded in the total genotyping

cost per sample.
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the DNA or ligations for plate 5 was higher than the

quality of plates 1–4.

RADcap captures nearly all loci targeted and produces
dense SNP matrices

We sequenced most of the targeted loci in RADcap_opti-

mized_Plate5 and only slightly fewer loci in RADcap_5-

cycle_Plate1. The 99.8% overlap between RADcap

_optimized_Plate5 and RADcap_5cycle_Plate1 illustrates

the strength of using sequence capture to collect RAD

loci: we were able to recover most of the same loci across

at least 90% of 192 samples that we prepared several

weeks apart.

GATK worked well on these data, recovering and

retaining large numbers of loci and SNPs at 50%, 80%

and 90% matrix occupancy. The number of loci and

SNPs called followed predictable patterns within and

among data sets from all treatments. GATK is in com-

mon use across a variety of genotyping studies and per-

forms well for moderate- to large-scale data sets

(Cornish & Guda 2015); however, GATK is unsuited to

most ddRAD data sets because of read duplication; thus,

our system for removing duplicates was critical for meet-

ing the assumptions of GATK. We could have used

STACKS or other SNP-calling software packages (e.g. FREE-

BAYES, IPYRAD, SAMTOOLS), and subsequent work will pro-

vide a detailed comparison among SNP-calling software

packages on RADcap data.

RADcap adds relatively few errors to Illumina
sequences

Errors in RADseq data may derive from library prepara-

tion because high-fidelity DNA polymerases introduce

2.8 9 10�7 errors per nucleotide incorporated (KAPA,

Boston, MA, USA). If these errors occurred in a single

cycle of PCR, it would result in 4683 errors in the

223 million PE64 reads in the present data set, which

could be amplified to high coverage. A much larger

problem is the 0.1% substitution error rate made by Illu-

mina machines (Glenn 2011), which results in an addi-

tional 28 544 000 incorrect bases. Decloning facilitated

by the random iTru5-8N primer tags does not prevent

PCR or sequencing errors, but the use of probabilistic

base-calling algorithms can help to reduce the likelihood

of a base introduced by these errors from being called as

a true variant.

RADcap works with mixtures of baits from different
organisms diluted to 19 concentration

The MYbaits-1 synthesis allows ~20 000 baits and the

smallest synthesis scale is sufficient for 12 captures. If

fewer than 20 000 baits are designed, the concentration

of baits is increased proportionately. We synthesized

2328 baits from Wisteria and 2624 baits from an other

organism (kudzu); therefore, we were able to reduce bait

costs by 50% for each project. Because we synthesized

approximately one-quarter of the maximum allowed

number of baits, we could do 12 9 4 captures with the

smallest MYbaits-1 synthesis. This demonstrates the flex-

ibility of RADcap; researchers can order baits for a vari-

ety of taxa and capture different numbers of samples

from each taxa (see Heyduk et al. (2016) for examples).

Baits for both species were present in all captures,

despite DNA from only one species being present in any

given capture. The large proportion of loci captured sug-

gests that there was no meaningful interference from the

additional baits during sequence capture and that the

concentration of baits we applied to each sample pool

was sufficient.

Comparison of RADcap to Rapture

Other groups with different goals have also combined

RADseq with sequence capture (Jones & Good 2015),

such as Suchan et al.’s (2016) use of RADseq fragments

as baits. While completing this manuscript, a separate

group published a method similar to RADcap (Rapture;

Ali et al. 2016). Rapture is an enrichment-based, RAD

sequencing approach that uses a two-step protocol to

capture RADseq loci. RADcap and Rapture both require

DNA isolation, restriction enzyme digests, ligation of

adapters, pooling, clean-up, capture and sequencing.

Both methods are significant advances that increase the

density and consistency of genotype matrices while

simultaneously reducing costs for large-scale projects.

There are significant differences in cost, flexibility,

duplicate detection and sequence coverage between

RADcap and Rapture as a result of RADcap’s integration

with 3RAD and the Adapterama system (Glenn et al.

2016). The 3RAD adapters require 8 phosphorylated

oligos and 32 plain oligos to achieve 96 combinations

(Graham et al. 2015), whereas Rapture requires 96

biotinylated oligos plus 96 phosphorylated oligos, mak-

ing Rapture adapters significantly more expensive ($370

for RADcap vs. $3750 for Rapture). Adding or switching

to different enzymes in Rapture requires additional sets

of adapters at additional cost, whereas 3RAD facilitates

the use of 72 different possible enzymes and combina-

tions of enzymes (Graham et al. 2015) with fewer sets of

interchangeable adapters. Rapture detects duplicates

based on the starting position of Read 2, which may be

anywhere along ~500 bases (following shearing and size

selection), whereas RADcap uses an 8-bp tag. Because

RADcap has 65 536 tags, whereas Rapture has ~500,
RADcap data will have fewer falsely identified
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duplicates than Rapture. Finally, dual-digest RADcap

increases coverage at both ends of the library molecule,

and we show that fewer reads per sample are required

to achieve the same coverage with RADcap than with

Rapture (20 000 vs. 50 000 for at least 49 coverage,

respectively). On the other hand, Rapture’s use of ran-

dom shearing increases the length of the genomic region

that is sequenced, which may be an advantage worth the

trade-off in decreased coverage, depending upon the

goals of the project.

Future improvements and extensions

RADcap opens the door to a variety of additional

research opportunities. One of the most important is the

option of using the capture baits from RAD loci on ran-

domly sheared genomic libraries (i.e. standard genomic

libraries). Such work will facilitate direct comparisons

between RAD loci and other loci commonly used for

sequence capture (exons, UCEs, anchored loci, etc.).

Although preparing randomly sheared genomic

libraries for RADcap increases the cost per sample, it

will allow the following: (i) assembling contigs at cap-

tured loci so that more sequence is available to facilitate

a better understanding of the sequence context for the

RADcap loci; (ii) investigating rates of divergence at

restriction sites; (iii) collecting RAD loci from samples

with deeper divergences than is feasible with restriction

sites (i.e. for phylogenetics) and (iv) using PHYLUCE (Fair-

cloth 2016) and other analytical tools that have been

developed for sequence capture systems. Capture baits

also facilitate using RADseq for degraded and contami-

nated samples (cf. Graham et al. 2015) and focusing on

microsatellite loci present in RADseq libraries, either

through the use of locus-specific baits that target the

flanking regions or via generic baits to the repeats (cf.

Glenn & Schable 2005). Additionally, given the high

efficiency we observe with two baits per locus, future

work should investigate whether a single bait per locus

is sufficient.

Summary

We present a novel protocol to cheaply sequence a speci-

fic set of hundreds to thousands of loci in hundreds to

thousands of samples deeply enough to obtain high-

quality genotypes. We demonstrate a generalizable

method for identifying PCR duplicates in Illumina

libraries. We show that it is possible to reduce PCR

duplicates to 5% of the total library, to routinely achieve

>80% on-target reads and to achieve dense matrices of

genotypes from hundreds of individuals. We strongly

recommend that researchers adopt methods that yield

high coverage and dense matrices of high-confidence

genotypes, and we hope that RADcap allows other scien-

tists to obtain high-quality data and make more robust

conclusions about their study systems.
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