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Whole-genome analyses resolve
early branches in the tree of life
of modern birds
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To better determine the history of modern birds, we performed a genome-scale phylogenetic
analysis of 48 species representing all orders of Neoaves using phylogenomic methods
created to handle genome-scale data. We recovered a highly resolved tree that confirms
previously controversial sister or close relationships. We identified the first divergence in
Neoaves, two groups we named Passerea and Columbea, representing independent lineages
of diverse and convergently evolved land and water bird species. Among Passerea, we infer
the common ancestor of core landbirds to have been an apex predator and confirm independent
gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to
sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved
challenging to resolve, which was best explained by massive protein-coding sequence
convergence and high levels of incomplete lineage sorting that occurred during a rapid
radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.

T
he diversification of species is not always
gradual but can occur in rapid radiations,
especially aftermajor environmental changes
(1, 2). Paleobiological (3–7) and molecular (8)
evidence suggests that such “big bang” radia-

tions occurred for neoavian birds (e.g., songbirds,
parrots, pigeons, and others) and placental mam-
mals, representing 95% of extant avian and mam-
malian species, after the Cretaceous to Paleogene
(K-Pg)mass extinction event about 66million years
ago (Ma). However, other nuclear (9–12) and mito-
chondrial (13, 14) DNA studies propose an earlier,
more gradual diversification, beginning within
the Cretaceous 80 to 125 Ma. This debate is con-
founded by findings that different data sets (15–19)
and analytical methods (20, 21) often yield con-

trasting species trees. Resolving such timing and
phylogenetic relationships is important for com-
parative genomics,which can informabout human
traits and diseases (22).
Recent avian studies based on fragments of 5

[~5000 base pairs (bp) (8)] and 19 [31,000 bp (17)]
genes recovered some relationships inferred from
morphological data (15, 23) and DNA-DNA hy-
bridization (24), postulated new relationships,
and contradicted many others. Consistent with
most previous molecular and contemporary mor-
phological studies (15), they divided modern
birds (Neornithes) into Palaeognathae (tinamous
and flightless ratites), Galloanseres [Galliformes
(landfowl) and Anseriformes (waterfowl)], and
Neoaves (all other extant birds). Within Neoaves,
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they proposed several large new clades, including
a waterbird clade containing taxa such as penguins,
pelicans, and loons, as well as a landbird clade co-
ntaining woodpeckers, birds of prey, parrots,
and songbirds. Despite these efforts, the relation-
ships among the deepest brancheswithinNeoaves;
the positions of a number of chronically challeng-
ing taxa such as shorebirds, mousebirds, owls, and
the enigmatic hoatzin; and the identification of the
first divergence ofNeoaves [proposed to have given
rise to two equally large clades designatedMetaves
and Coronaves (25)] remain unresolved.
Although someof the findings of the initialmulti-

gene studies (8, 17) have since been corroborated
with larger sequence (26–28) or transposable ele-
ment (TE) insertion data sets (29), other proposed
clades were not supported (27, 28). Furthermore,
complete mitochondrial genome analyses recover
different relationships (14, 18) and fail to support
higher landbird monophyly [but see (30)]. Some
of the differences among studies could arise from
gene tree incongruence, possibly due to incom-
plete lineage sorting (ILS) of those genes (29, 31),
nucleotide base composition biases (19), differ-
ences between data types (32, 33), or insufficient
data (34,35). Thus, it has beendifficult to establish
confidence in whether specific avian traits—such
as vocal learning, predatory behavior, or adaptations
to aquatic or terrestrial habitats—reflect single or

multiple independent origins and under what
ecological conditions these events have occurred.
A common assumption is that whole-genome

data will improve phylogenetic reconstructions,
due to the complete evolutionary record within
each species’ genome and increased statistical
power (34, 35). We test this hypothesis through
phylogenetic analysis on 48 avian genomes we
collected or assembled, representing all commonly
accepted extant neognath orders (36, 37) and two
palaeognaths, with several nonavian reptiles and
human as outgroups.

Species choice, computational
developments, and total evidence
nucleotide data set

We chose species representing all neoavian orders
according to different classifications [see supple-
mentarymaterials section 1 (SM1)]. These include
groups that have been challenging to place within
the avian tree, such as the hoatzin, cuckoo-roller,
nightjars, mousebirds, mesites, and seriemas
(table S1). We also included species postulated
to descend from deep nodes in their orders to
break up potentially long branches, such as the
kea for parrots (Psittaciformes) and the rifleman
for songbirds (Passeriformes). We included vocal-
learning species (oscine songbirds, hummingbirds,
and parrots), used as models for spoken lan-

guage in humans (38), and their proposed closest
vocal-nonlearning relatives (suboscines, swifts,
falcons, and/or cuckoos, depending on the tree)
to help resolve differences in trees that lead to
different conclusions on their independent gains
(15, 17, 18, 26, 29, 38, 39). The resulting data set
consisted of 45 avian genomes sequenced in part
for this project [48 when including previously
published species (40–42)] and three nonavian
reptiles [American alligator, green sea turtle, and
green anole lizard (43)] (table S1), with details
reported in (44–52).
We were confronted with computational chal-

lenges not previously encountered in smaller-scale
phylogenomic studies. Differently annotated ge-
nomes complicated the identification of orthologs,
and the size of the data matrix made it impossible
to use many standard phylogenetic tools. To ad-
dress these challenges, we generated a uniform
reannotation of the protein-coding genes for all
avian genomes based on synteny in chicken and
zebra finch (SM2). We found that the SATé iter-
ative alignment program (53, 54) yielded more
reliable alignments than other algorithms for
large-scale data, and we developed alignment-
filtering algorithms to remove unaligned and
incorrectly overaligned sequences (SM3). We de-
veloped ExaML, a computationally more efficient
versionof themaximumlikelihoodprogramRAxML,
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for estimating species trees from genome-scale
concatenated sequence alignments (SM4) (55–57).
We also developed a statistical binning approach
that improves multispecies coalescent analyses
for handling gene trees with low phylogenetic
signal to infer a species tree (SM5) (58). These
computationally intensive analyses were con-
ducted on more than 9 supercomputer centers
and required the equivalent of >400 years of com-
puting using a single processor (SM3 and SM4).
From these efforts, we identified a high-quality

orthologous gene set across avian species, con-
sisting of exons from 8251 syntenic protein-
coding genes (~40% of the proteome), introns
from 2516 of these genes, and a nonoverlapping

set of 3769 ultraconserved elements (UCEs) with
~1000 bp of flanking sequences. This total evi-
dence nucleotide data set comprised ~41.8 mil-
lion bp (table S3 and SM4), representing ~3.5%
of an average avian genome.

A genome-scale avian phylogeny

Total evidence nucleotide tree

The total evidence nucleotide alignment parti-
tioned by data type (introns, UCEs, and first and
second exon codon positions; third positions ex-
cluded as described later) analyzed with ExaML
under the GTR+GAMMAmodel of sequence evo-
lution (SM4) resulted in a highly resolved total
evidence nucleotide tree (TENT) (Fig. 1 and fig.

S1). The three recognized major groupings within
extant birds—Palaeognathae, Galloanseres, and
Neoaves (the latter two united in the infraclass
Neognathae)—were recovered with full (100%)
bootstrap support (BS). The tree revealed the first
divergence within extant Neoaves, resulting in two
fully supported, reciprocally monophyletic sister
clades that we named Passerea (after its most
speciose group Passeriformes) and Columbea
(after its most speciose group Columbiformes)
(Fig. 1; see SM6 for rationale of clade names).
Within Passerea, the TENT strongly confirmed

themonophyly of two large closely related clades
that we refer to as core landbirds (Telluraves) and
corewaterbirds (Aequornithia) (8, 16, 17, 27, 36, 59);
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Fig. 1. Genome-scale phylogeny
of birds.The dated TENT
inferred with ExaML. Branch colors
denote well-supported clades
in this and other analyses. All BS
values are 100% except where
noted. Names on branches denote
orders (-iformes) and English group
terms (in parentheses); drawings are
of the specific species sequenced
(names in table S1 and fig. S1). Order
names are according to (36, 37)
(SM6).To the right are superorder
(-imorphae) and higher unranked
names. In some groups, more than
one species was sequenced, and
these branches have been collapsed
(noncollapsed version in fig. S1).Text
color denotes groups of species with
broadly shared traits, whether by
homology or convergence.The arrow
indicates the K-Pg boundary at
66 Ma, with the Cretaceous period
shaded at left. The gray dashed line
represents the approximate end time
(50 Ma) by which nearly all neoavian
orders diverged. Horizontal gray bars
on each node indicate the 95%
credible interval of divergence time in
millions of years.
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we use the term “core” instead of “higher” to pre-
vent interpretation that these groups are more
advanced or more recently evolved than other
birds. Within core landbirds, we found 100% BS
for a previously more weakly supported clade
(Australaves) containing seriemas (historically

placed inGruiformes), falcons (historically grouped
with other diurnal birds of prey), parrots (histo-
rically difficult to place), and Passeriformes and a
sister clade (Afroaves) containing Accipitrimorphae
birds of prey, owls,mousebirds, woodpeckers, and
bee eaters, among others (Fig. 1) (8, 17, 26, 29, 60).

Core waterbirds were sister to a fully supported
clade (Phaethontimorphae) containing tropicbirds
and the sunbittern (Fig. 1) (27, 28). We did not in-
clude Phaethontimorphae in the core waterbirds
because their relationship had relatively low
70% BS, although their aquatic (tropicbirds)
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Fig. 2. Metatable analysis of species trees. Results for different genomic
partitions, methods, and data types are consistent with or contradict clades in
our TENT ExaML, TENT MP-EST*, and exon-only trees and previous studies of
morphology (15), DNA-DNA hybridization (24), mitochondrial genes (14), and
nuclear genes (17). Letters (A to DD and a to e) denote clade nodes highlighted in
Fig. 3, A andB,of the ExaMLandMP-EST*TENT trees. Each column represents a
species tree; each row represents a potential clade. Blue-green signifies the

monophyly of a clade, and shades show the level of its BS (0 to 100%). Red,
rejection of a clade; white, missing data.We used a 95% cut-off (instead of a
standard 75%) for strong rejection due to higher support values with genome-
scale data. The threshold for the mitochondrial study was set to 99% due to
Bayesian posterior probabilities yielding higher values than BS. An expanded
metatable showing partitioned ExaML, unbinnedMP-EST, and additional codon
tree analyses is shown in fig. S2.



and semiaquatic (sunbittern) lifestyles are consist-
ent with a waterbird grouping, and multiple anal-
yses presented below group them with 100% BS.
The TENT also resolved at 100% BS taxa that
were previously difficult to place, including uniting
cuckoos, turacos, and bustards (Otidimorphae)
and placement of the mousebird among core
landbirds. The Columbea also had separate land-
bird and waterbird groups. These results dem-
onstrate that genome-scale data can help resolve
difficult relationships in the tree of life.

Comparisons of TENT with
previous studies

The TENT contradicted some relationships in
avian phylogenies generated from morphological
characters (15), DNA-DNA hybridization (24),
and mitochondrial genomes (14, 18) (Figs. 2, fig.
S2, and Fig. 3A versus fig. S3, A to C). For example,
our Falconiformes excluded the previously in-
cluded eagles and New World vultures (now in
Accipitrimorphae); our Coraciiformes was more
narrowly delineated and excluded hornbills and
cuckoo-rollers; our Pelecaniformes excluded tro-
picbirds; and our Gruiformes excluded seriemas,
bustards, the sunbittern, and mesites. The TENT
did not fully support the view based on one gene
(b-fibrinogen) that the first divergence in Neo-
aves resulted in two equally large Metaves and
Coronaves radiations (25). However, all Colum-
bea species in the TENT were in the previously
defined Metaves, supporting the hypothesis of
two parallel radiations of birds with conver-
gent adaptations (25).
The TENT was most congruent with past (8, 17)

and more recent (27, 28) smaller-scale multilocus
nuclear trees (Figs. 2 and3Aand fig. S3D), although
most congruence was limited to the core landbirds
and core waterbirds. Within the former, we recov-
eredAustralaves andAfroaves (60), althoughwith a
different branching ordering in our tree; our taxon
sampling is insufficient to address the biogeogra-
phic justification of their names. The TENT recov-
ered a number of groups not present in these
previous trees, and even for those present, the
TENT had higher BS (Fig. 2). Absence of nonavian
outgroups in our TENTabovewas not responsible
for variation with past studies because we recov-
ered the same topologywhen including outgroups
(Fig. 2 and fig. S4, A and B), despite the outgroups
having only ~30% orthologous sequences in the
TENT alignment (e.g., fig. S21; SM3).

More data are responsible for resolving
early branches of the tree

Despite the many fully supported (100% BS) rela-
tionships in theTENT, lower supportwasobtained
for 9 of the 45 internal branches (although still
within the high 70 to 96% BS range). Almost all
were at deep divergences within the Neoaves,
after the Columbea and Passerea divergence and
before the ordinal divergences (Fig. 1 and fig. S1).
The monophyly of each of the superorders, how-
ever, had 100% BS. The presence of these lower
BS values is in contrast to the expectation that
genome-scale alignments would result in com-
plete phylogenetic resolution (34, 35, 61).

However, consistent with this hypothesis, we
found that most relationships that had less than
100% BS with the full TENT data exhibited a
steady increase in support with an increase in
random subsets of the TENT data (Fig. 2 and fig.
S5). The placement of the Phaethontimorphae
(sunbittern and tropicbirds) and hoatzin changed
when smaller (25 to 50%) amounts of data were
analyzed. Further exploring data amount, we
used the assembled~1.1-billion-bp chicken genome
(40) as a reference to generate a 322-million-bp
MULTIZ alignment of putatively orthologous ge-
nome regions across all species, comprising ~30%
of an average assembled avian genome and cor-
responding to the maximal orthologous sequence
obtainable across all orders under our homology
criteria (SM3). We ran ExaML on the alignment
for ~42 CPU years, with 20 maximum likelihood
searches on distinct starting trees and 50 bootstrap
replicates before reaching our convergence crite-
rion (SM4) on a whole-genome tree (WGT). No-
tably, all runs resulted in one of two trees: one
identical to the TENT topology (fig. S4C) and a
second almost identical to the TENT (fig. S4D).
This latter tree differed from the TENT by local
shifts in five branches, all clades that had less
than 100% BS in the TENT (fig. S4, A and D).
Given the relatively minor differences between
the second WGT and the TENT, together they
corroborate the majority of relationships in the
avian tree of life. Although the WGT has more
data (table S3), the orthology (SM2) and align-
ment (SM3) qualities are higher for the TENT,
and thus we consider the TENT more reliable.

Noncoding data contribute more to
the TENT topology

We sought to determine if different genomic par-
titions contribute differently to theTENTand found
that ExaML trees using only introns or UCEs from
the TENT data were largely congruent with the
TENT and WGTs for branches that had strong
support (BS > 75%) in the intron and UCE trees
(Figs. 2; 4, A and B; and 5B). However, the intron
tree, and even more so the UCE tree, had lower
resolution than the TENT (Fig. 5A),mostly ondeep
branches (Fig. 4, A and B), consistent with fewer
data leading to lower resolutionondeeperbranches.
For the intron tree, some lower-resolution branches
had local shifts, but they matched those found in
the secondWGTor the25 to 75%data subsets of the
TENT; anexceptionwasPhaethontimorphae,which
moved from being sister to core waterbirds with
70% BS in the TENT (but 100% BS in theWGTs) to
sister to core landbirds with 86% BS in the intron
tree. For the UCE tree, the lower-resolution, deep
branches had more distant shifts. Trees created
from analysis of the first and second codon posi-
tions (exon c12) of the TENT data also had lower
levels of BS (~39 to 64%) but with more topo-
logical differences on the deep branches (Figs. 2,
4C, and 5A), yet all but one of the fully resolved
relationships (local difference in egret + ibis +
pelican) were congruentwith the TENT (Fig. 5B).
These findings demonstrate that noncoding in-

tron sequences lend greater support for the TENT
than the protein-coding and UCE sequences, con-

sistent with intron sequences having a higher rate
of evolution (SM4) and thus greater phylogenetic
signal. These differences are not merely due to
shorter alignments of the exon andUCE sequences,
because each accounted for ~25% of the TENT
data, similar in sequence length to the random25%
subset of the TENT with introns (table S3) that
produced a tree with a higher average BS and a
topology closer to the fullTENT(Fig. 5Aand fig. S5D).

Incomplete lineage sorting and impact
on deep branches

Deeper branches exhibit higher gene
tree incongruence

We next investigated ILS, a population-level pro-
cess that results in incongruence between gene
trees and the species tree (62). Consistent with
conditions that could lead to ILS (63), the TENT
had a wall of many (25 of 45; ~55%) very short
internal branches (0.0006 to 0.002 substitutions
per site), almost all at deep divergences within
Neoaves (Fig. 3A, inset, and fig. S7). Indeed, all
nine branches with <100% BS were among the
shortest in the TENT (fig. S8), many in succes-
sion, suggesting that reduced BS could be related
to conflict among gene trees.
To test this hypothesis, we compared the dis-

tribution of gene trees that have strong conflict
(>75%BS)with branches of the ExaMLTENT.We
focused on introns because they had greater gene
tree resolution (higher average BS) than exons or
UCEs (fig. S24 and SM4). The 2485 introns with
orthologs available in the two outgroup Palae-
ognathae species ranged from exhibiting no con-
flict to exhibiting considerable conflict (up to 950
genes or 38%) for some branches of the TENT
(Fig. 3A, blue numbers, and Fig. 5C). The per-
centage of gene tree conflict was successively
higher for the shorter and deeper branches of
the TENT (Fig. 3A), particularly those with <100%
BS (e.g., branches R, U, and Z in Fig. 3, A and C).
Conversely, these short branches had fewer (0 to
20%) intron gene trees supporting them at high
(>75%) BS levels (Fig. 3A, black numbers, and
Fig. 3D). These findings suggest that ILS could
have affected the inferred relationships of some
of the deep branches of Neoaves in the concat-
enated tree analysis.

Multispecies coalescent approach infers
a species tree similar to the TENT

To determine if ILS affected the concatenated
tree analyses, we explored whether a multi-
species coalescent model leads to a different tree
topology. Multispecies coalescent methods esti-
mate the species tree from a set of gene trees and
are statistically consistent when discordance
among gene trees results from ILS (64, 65). How-
ever, the inferred species tree can have low re-
solution (BS) and be less topologically accurate
when the input gene trees are poorly resolved
(33, 66), a problem that many of our genes faced
(SM4). Thus, we developed a statistical binning
technique that first groups genes into sets based
onphylogenetic similarities, fromeach set estimates
a supergene tree, and uses them in the maximum
pseudolikelihood estimation of the species tree
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(MP-EST) multispecies coalescent approach (67)
to infer a species tree (SM5) (58).
This approach produced more accurate es-

timated species trees compared with MP-EST ap-
plied to unbinned gene data sets that have low

phylogenetic signal (i.e., figs. S2 and S9; SM7) (58).
It produced a highly resolved binned MP-EST
(MP-EST*) TENT tree that was highly congruent
with the ExaML TENT (Fig. 3, A and B). There
were only local shifts of five clades, nearly all

on lower-support (<100% BS) branches of the
ExaML andMP-EST* TENTs (Fig. 3, A and B). The
monophyly of Afroaves was the only case of 100%
BS in the ExaML TENT that conflicted with the
MP-EST* TENT tree and involved a local shift in
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Fig. 3. Evidence of ILS.
(A) Cladogram of ExaML
TENT avian species tree,
annotated for nodes from
Fig. 2 (letters), for
branches with less than
100% BS without and with
(parentheses) third codon
positions, for strong
(>75% BS) intron gene
tree incongruence and
congruence, and for indel
congruence on all
branches (except the
root). Thin branch lines
represent those not pres-
ent in the MP-EST* TENT
of (B). (Inset) ExaML
branch lengths in substi-
tution units (expanded
view in fig. S7). Color
coding of branches and
species is as in Fig. 1.
(B) Cladogram of MP-
EST* TENT species tree,
annotated similarly as in
the ExaML TENT in (A).
Thin branch lines repre-
sent those not present in
the ExaML TENT of (A).
(C) Percent of intron gene
trees rejecting (≥75% BS)
branches in the ExaML
TENT species tree relative
to branch lengths. Letters
denote nodes in (A) that
either have less than
100% support or are dif-
ferent from the MP-EST*
TENT in (B). (D) Percent
of intron gene trees
supporting (≥75% BS)
branches in the ExaML
TENT species tree relative
to branch lengths. (E)
Indel hemiplasy [the
inverse of percent of
retention index (RI) = 1.0
indels that support
the branch; see SM9]
correlated with ExaML
TENT branch length (log
transformed). r2, correla-
tion coefficient. (F) Indel
hemiplasy correlated with
ExaML and MP-EST TENT
internal branch divergence
times in millions of years (log transformed). Plotting with internal branch times was necessary to compare both trees (SM9). (G) TE hemiplasy with owls
among the core landbirds. Line color, shared TE tree topology; line thickness, relative proportion of TEs that support a specific topology (total numbers
shown in the owl node). Circles at end of lines indicate loss of the TE allele in that species after ILS, as the sequence assembly contains an empty TE
insertion site (SM10). Only topologies with two or more TEs are shown. (H) TE hemiplasy with songbirds among the core landbirds.
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Fig. 4. Species trees inferred from concatenation of different genomic partitions. (A) Intron tree. (B) UCE tree. (C) Exon c12 tree. (D) Exon c123 tree. The
tree with the highest likelihood for each ExaML analysis is shown. Color coding of branches and species is as in Fig. 1 and fig. S1. Thick branches denote those
present in the ExaML TENT. Numbers give the percent of BS.
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Fig. 5. Comparisons of total support among species trees and gene
trees. (A) Average BS across all branches of species trees from varying
input data as in Fig. 2, ordered left to right from lowest to highest values.
(B) Numbers of incompatible branches (out of 45 internal), at different
support thresholds, with the ExaML TENT tree, ordered left to right from
most to least compatible (expanded analysis in fig. S6). (C) Analyses of
intron, exon, and UCE gene tree congruence and incongruence with nodes

in the ExaML TENT, MP-EST* TENT, and other species trees. Names and
letters for clades are as in Figs. 2 and 3. “Missing” denotes the case in
which an ortholog is not present for any taxa or is present for only one
taxon, and hence monophyly cannot be determined. “Partially missing”
indicates the case in which some taxa are missing but at least two of the
taxa are present, and thus we can still categorize it as either monophyletic
or not. For further details, see SM7.



the owl with mousebirds and Accipitrimorphae
birds of prey. Two branches with <100% BS in the
ExaML TENT increased to 100% in the MP-EST*
TENT, including Phaethontimorphae with core
waterbirds. The intron trees supported some
branches more in the ExaML and some more in
the MP-EST* TENT (Fig. 3, A and B). Neverthe-
less, the overall topology of both trees was very
similar, including the basal Columbea and Pass-
erea divergence.

All estimates of gene trees differ from our
candidate species trees

No single intron, exon, or UCE locus from our
TENT data set had an estimated topology iden-
tical to the ExaML TENT or MP-EST* TENT (fig.
S10, A and B). The top three loci (all introns) with
the closest inferred topologies differed from the
two versions of the TENT on more than 20 to
30% of their branches. Average topological dis-
tance with the ExaML species tree was 63% for
the introns, 66% for the UCEs, and 80% for the
exons. To test whether our total evidence data
set missed some genes with the TENT topol-
ogies, we constructed a more comprehensive col-
lection of genes trees with phylomeDB, which
assigns orthology using maximum likelihood anal-
yses (http://phylomedb.org) [see SM8 and (68)].
For ~13,000 (low-coverage genomes) to ~18,000
(high-coverage genomes) annotated genes across
avian species (44), phylomeDB inferred orthologs
for 94.58% of them and these agreed with the
synteny-based orthology of the 8251 protein-
coding genes of the TENT by 93%. This more
complete set of protein-coding genes still did
not have a single estimated gene tree that was
fully congruentwith theExaMLorMP-EST*TENT
trees (fig. S10, C and D), and there was overall
low congruence with the species trees (http://tol.
cgenomics.org/birds_v1) (fig. S11, A and B). The
conflicting nodes largely reflected branches with
low statistical support (approximate likelihood
ratio test < 0.95), which primarily corresponded
to the short successive deep branches of Neoaves.
These findings can be explained by both a low
amount of phylogenetic signal in individual loci
(figs. S24 to S26 and SM4) and a high amount of
ILS during the neoavian radiation.

Indels suggest a high degree of ILS at the
earliest branches of the Neoaves tree

We further assessed ILS using insertions and de-
letions (indels) (69), because they have less homo-
plasy (convergence) than single nucleotides (SM9),
and unlike gene trees, indels can be examined as
discrete characters mapped to a reference tree
without the added inference of constructing trees
from them. We scored 5.7 million indels from the
TENT alignment, of which 24% were shared by
two or more taxa (table S3). We found indel incon-
gruence on all branches of the ExaML TENT, as
measured inversely by the percent of the indel
characters uniquely defining each branch (Fig. 3A,
red numbers; SM9). Like the gene trees, there ap-
peared to be a successive decrease in the percent-
age of indels that supported deeper branches of
each major clade (Fig. 3A). Most branches with

the highest levels of indel incongruence belonged
to the shortest and deepest ones that made local
shifts in analyses, with the two branches joining
mousebirds and owls exhibiting the highest
indel incongruence and the shortest internal
branch lengths in the ExaML TENT (Fig. 3A
and fig. S7). Consistent with these findings, indel
incongruence was inversely correlated with in-
ternal branch length, and branch length explained
87% (r2) of the variation in the percentage of
nonhomoplasious indels defining each branch
(Fig. 3E). The correlation of indel incongruence
versus branch time was similar for both ExaML
and MP-EST* TENT trees (Fig. 3F).
Indel incongruence is not due to the indels sup-

porting another species tree, as applyingExaMLon
indels from the total evidence alignment as binary
data produced a total evidence indel tree that was
largely congruent with the ExaML TENT and MP-
EST* TENT for all but one node with a local shift
of pigeon within Columbea (fig. S12). Homoplasy
due to convergence is thought to be positively cor-
related with branch length [i.e., long branch attrac-
tion (70)]. The only known source of incongruence
that is inversely correlated with internal branch
length is hemiplasy (differential inheritance of poly-
morphic alleles) (64, 71). Because hemiplasy is a
hallmark of ILS and 87% of the variation in indel
incongruence is explained by branch length, our
indel findings suggest high levels of ILS during the
basal radiationofNeoaves,with comparable support
for the ExaML orMP-EST* versions of the TENT.

Transposable elements with higher ILS
in the deepest branch of core landbirds
with owls

We tested for a signature of ILS in TE insertions,
which have extremely low homoplasy because
independent insertions into the same location
in a genome are rare (SM10) (72, 73). We focused
on the owl because its position exhibited one of
the strongest incongruencies among the species
tree results. Of 3671 barn owl long terminal re-
peat TE insertion loci orthologous in all of the bird
genomes, 61 were informative for owls among
core landbirds and showed two dominant exclu-
sive TE topologies: (i) an owl + Accipitrimorphae
topology, as seen in the MP-EST* TENT; and (ii)
an owl + Coraciimorphae topology that excludes
mousebird, as seen in the UCE tree (Fig. 3G com-
pared to Figs. 3B and 4B). Nine other topologies
had fewer markers supporting them. In contrast,
for 25 informative TEs of Neoaves in (29), 13were
informative for Australaves, and of these, 3
were exclusive for Passeriformes + parrots, 7 for
Passeriformes + parrots + falcons, and 2 for the
latter group plus seriemas, with no alternative to-
pologies for the first two groups (Fig. 3H). If the
passeriform TE insertions exhibited a similar mix-
ture of alternative distributions as for the owl, just
10markerswould result in conflictingdistributions
(4 with one, 3 with another, and 3 for the remain-
ing topologies) instead of a conflict-free topology.
Although this analysis is limited to specific taxa, it
suggests higher ILS near the deepest branches of
Afroaves involving the owl, consistent with the
branch length, gene tree, and indel findings.

Overall, these results reveal considerable ILS
during the neoavian radiation and that, even
with genome-scale data, ILS may affect the in-
ference of small local relationships in the deep
branches of the species tree that have long been
more challenging to resolve. However, ILS does
not affect the majority of other phylogenetic
relationships we found using genome-scale data.

Protein-coding data resolve avian
phylogeny poorly but reflect life
history traits

Codon positions of protein-coding genes
and life history relationships

We investigated sources of lower resolution
and incongruence for the tree based on protein-
coding sequences (Fig. 4C). This is crucial for phy-
logenomic inference, as many studies [including
transcriptome analyses (19, 74)] use only protein-
coding genes to infer species trees. We found that
ExaML analyses with either all (c123; Fig. 4D) or
individual codon positions (c1, c2, c3; fig. S13, A to
C) produced trees with lower BS (Fig. 5A) and
greater differences in topologies (Fig. 2 and fig.
S2) compared with noncoding data and coding +
noncoding combined. The differences between
coding versus noncoding trees were not solely
due to shorter sequence length of the coding data,
because the full coding data set (13.3 million bp
for c123) produced a tree with fully supported
(100%BS) relationships thatwere incongruentwith
those fully supported in the intron (19.3million bp),
TENT (37.4 million bp without the third codon
position), andWGT (322.1 million bp) (Figs. 2 and
5B, and table S3). Surprisingly, the c123 topology
associated species more with life history traits
than the TENT topology. This included a strongly
supported clade (100% BS on most branches)
that comprised the three groups of vocal learners
(parrots, songbirds, andhummingbirds) andmost
of the nonpredatory core landbirds, a monophy-
letic clade of diurnal birds of prey and seriemas
(albeit with low 40% BS), and a monophyletic
clade of all aquatic and semiaquatic species of
Passerea and Columbea (also with low 20% BS)
(Fig. 4D). Partitioning the data to account for
possible differences in evolutionary rates among
genes (SM4) did not result in a tree more similar
to the TENT, but instead in a tree with increased
support for monophyletic groupings of species
with these broadly shared traits (fig. S14C). The
c1, c2, and amino acid tree topologies (fig. S13, A,
B, and D) were more congruent with the c12 tree
(Figs. 2 and 4C), consistent with these two codon
positions largely specifying amino acid identity.
In contrast, the c3 tree was very similar to the
c123 tree but with higher BS (63 to 82%) for
similar trait groupings; it moreover brought all
basal neoavian landbirds together as sister to all
neoavian aquatic/semiaquatic species (figs. S2 and
S13C). Most individual gene trees show weak to
strong rejection of these relationships (Fig. 5C).
As expected (19), the third codon position exhib-

ited greater base composition variation among spe-
cies than the other codon positions and even other
genomic partitions (fig. S15A). Although all co-
don positions violated the stationarity assumption
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in the GTR + GAMMA model of sequence evolu-
tion, the third codon position exhibited a much
stronger violation (fig. S15B). Reducing this
variation by RY recoding of purines (R) and py-
rimidines (Y) on the third codon position (SM4)
made the c123 tree topology more similar to the
c12 topology (Fig. 2 and fig. S14D). These results
demonstrate that the third codon position exerts
a strong influence on the protein-coding–tree
topology, overriding signals from the first and
second codon positions. They also suggest that a
signal in the third codon position could also be
associated with convergent life history traits.

Heterogeneous protein-coding genes
associated with life history traits

We further investigated the source of the conflict
in the protein-coding genes (SM11) and found that
trees using all codon positions from the 10% most
compositionally homogeneous (low-variance) exons
(n = 830) were most congruent with the c12 tree
and, thus, more similar to the TENT than to the
c123 tree (Figs. 2 and 6A; cladograms in fig. S16, A
to C). Conversely, trees using all codon positions
from the 10% most compositionally heteroge-
neous (high-variance) genes (n = 830) weremore
congruent with the exon c123 and c3 trees (Figs. 2
and 6B and fig. S16, B and D). The branch lengths
of the high-variance exon tree showed a strong
positive correlationwithGCcontent and anegative
correlation with the average body mass of species,
seenat amuch lessermagnitude in the low-variance
exon tree (Fig. 6, A to D). The correlations for the
high-variance geneswere also strongest on the third
codon position (fig. S17, A and B) (75, 76). In addi-
tion, the genomic positions of the high-variance
genes were skewed toward the ends of the chro-
mosomes, whereas the positions of the low-variance
genes were skewed toward the center (Fig. 6, E and
F, and fig. S17, C and D). Although the available
introns of these genes had significant correlations
amongGC content and bodymass and among GC
content and chromosome position, they exhibited
less heterogeneity overall (fig. S17, A to D) and
yielded trees that weremuchmore congruent with
each other and with the TENT (figs. S2 and S17, E
and F). An ExaML TENT tree that included the
third codon position (TENT + c3) was identical in
topology to the ExaML TENT without the third
codonposition andhad increased support for six of
the nine branches that had less than 100% BS (fig.
S1 versus fig. S18, also Figs. 3A and 5A).
These results suggest that in the context of

protein-coding data only, high–base compositional
heterogeneity and life history have a strong impact
on incongruence with the species tree, and thus
are not suitable for generating a highly resolved
phylogeny.However, in thecontextof largeamounts
of noncoding genomic data, the phylogenomic sig-
nal in the exondata adds support to the species tree.

Dating the radiation of Neoaves

The generation of a well-resolved avian phylog-
eny allowed us to address the timing of avian
diversification. To estimate the avian timetree
with genomic-scale data, we used first and sec-
ond codon positions from 1156 clock-like exon

genes (which do not strongly exhibit the above
protein-coding compositional bias), calibrated
with 19 conservatively chosen avian fossils (plus
nonavian outgroups) as minimum bounds for line-
age ages (with a maximum-bound age constraint
of 99.6 Ma for Neornithes), in a Bayesian auto-
correlated relaxed clock method using MCMCTREE
(77) on the fixed ExaML TENT topology (SM12).
Our results suggest that after the Palaeogna-

thae and Neognathae divergence about 100 Ma in
the Late Cretaceous, the Palaeognathae diverged
into their two stem lineages [ostrich and tinamous
(11, 78)] about 84Ma, and theNeognathaediverged
into their stem lineages (Galloanseres and Neo-
aves) about 88 Ma (Fig. 1). Although the 95% cre-
dibility interval for the ostrich-tinamou divergence
is broad, its lower bound is consistent with the
fossil record (79). In contrast, both the earliest di-
vergence within Galloanseres and an explosive di-
versification within Neoaves were dated to occur
around the K-Pg boundary, with 95% credibility
intervals spanning 6.5 million years, on average. In
particular, the most basal divergences within Neo-
aves (Columbea, Passerea, and two more) occurred
before the K-Pg transition (67 to 69 Ma) and all
others after, with nearly all ordinal divergences com-
pleted by 50Ma (Fig. 1, dashed line). The estimated
age for the basal split of Passeriformes, represent-
ing ~60% of all living ~10,400 avian species, was
around 39Ma. These divergence times conflict with
some previous studies based on nuclear (9–12) and
mitochondrial (13, 14) DNA but are consistent with
the fossil record (80), including the identification of
Vegavis iaai, a very Late Cretaceous (66 to 68 Ma)
stem-anseriform fossil (80, 81), and the dearth of
verifiable Neoaves fossils in the Late Cretaceous (5).
These findingswere similar regardlessof the specific
tree from this study we dated or whether we used
a later minimum age (86.5 Ma) for Neornithes
(table S16; more discussion on dating in SM12).

Discussion

Our study is an example of the extraordinary
amount of genomic sequence data required to
produce a highly supported phylogeny spanning
a rapid radiation. The conflict we observe with
other data types (14, 15, 24) can no longer be
considered to be due to error from smaller
amounts of sequence data (8, 17) nor to differ-
ences in concatenation versus coalescence meth-
ods (27, 28). The absence of a single gene tree
identical to the avian species tree is consistent
with studies in yeast (82), indicating that phy-
logenetic studies based on one or several genes,
especially for rapid radiations, will probably be
insufficient. The major sources of the gene tree
incongruence we find are low-resolution gene
trees and substantial ILS during the rapid radi-
ation. It is possible that someof the deepbranches
of the species tree are in the anomaly zone (63),
although the gene tree support is not high enough
to confidently test this idea. It is also possible that
some gene and local species tree incongruence
could reflect ancient hybridization during the
radiation, but distinguishing between this and
other sources of hemiplasy (83) would require
more complete assemblies, genes without mis-

sing data across species, and development of new
methods (84). Finally, it is also possible that in-
sufficient taxon sampling contributed to the local
species tree incongruence, known to lead to long-
branch attraction (70). We did seek to break up
some long branches, specifically within core land-
birds and core waterbirds. However, the very
large-scale data collection for this study made
it necessary to prioritize species for specific parts
of the tree. Moreover, the potential to add taxa
that will break up long branches is limited for a
number of groups because the species either are
extinct or there are no more major lineages to
sample, suggesting that further study of analyt-
ical methods for whole genomes will prove to be
as important as additional taxa.
Genomic-scale amounts of protein-coding se-

quence data were not only insufficient but were
also misleading for generating an accurate avian
phylogeny due to convergence. One possible ex-
planation is convergentGC-biased gene conversion
in exons, where AT-GC mismatches are corrected
by DNA repair molecules in a biased manner to
produce more gametes with the GC allele (85).
GC-biased gene conversion correlates with recom-
bination rate (86), and new GC alleles reach
fixation more easily in species with larger pop-
ulation sizes, which tend to also have smaller
body sizes (87). Recombination also tends to be
higher toward the ends of chromosomes (88),
where we found higher GC-rich high-variance
exons. An alternative possibility is that the as-
sociations of ecology and/or life history are re-
lated to convergent exon-coding mutations for
those traits in avian genomes (89, 90).
With a well-resolved tree, it becomes possible to

more confidently infer evolution of convergent
traits. Our tree lends support for either three in-
dependent gains of vocal learning (38, 91) or two
gains (hummingbirds and the common ancestor of
parrots andoscine songbirds) followedby two losses
(in New Zealand wrens and suboscines) (29, 39).
However, a single origin for parrots and oscines
followed by two losses (three events) is not much
less parsimonious than independent origins in
parrots and oscines (two events). In addition, the
suboscine Procnias bellbirds have recently been
shown to be vocal learners (92, 93), suggesting that
there could have been a fourth gain or a regain
after a loss of vocal learning in other suboscines.
The non-monophyly of the birds of prey at the
deepest branches of the Australaves and Afroaves
radiations suggests that the common ancestor of
core landbirds may have been an apex predator,
followedby two losses of the raptorial trait. Seriema
at the deepest branch of Australaves could be con-
sidered to belong to a raptorial taxon because they
kill vertebrate prey (94) and are the sole living
relatives of the extinct giant “terror birds,” apex
predators during the Paleogene (95, 96). The deep-
est branches after Accipitriformes and owl among
the Afroaves, the mousebirds and cuckoo-roller,
have Eocene relatives with raptor-like feet (97), and
the cuckoo-roller specializes on chameleon prey
(98). This suggests that losses of the predatory phe-
notype were gradual across successive divergences
of each of the two core landbird radiations. More
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Fig. 6. Life history incongruence in protein-coding trees. (A) Species
tree inferred from low–base composition variance exons (n = 830 genes)
graphed with branch length, third codon position GC (GC3) content
(heatmap), and log of body mass (numbers on branches). (B) Species tree
inferred from high–base composition variance exons (n = 830 genes),
graphed similarly as in (A). The %GC3 scale is higher and ~10 times wider
for the high-variance genes, and the branch lengths are ~3 times longer
[black scales at the bottom of (A) and (B)]. Color coding of species’ names is
as in Fig. 1. Cladograms of trees in (A) and (B) are in figs. S16, A and B. (C andD)

Correlations of branch length with GC content (C) and body mass (D) of the
low-variance and high-variance exons. Correlations were still significant after
independent contrast analyses for phylogenetic relationships (SM11). (E and F)
Relative chromosome positions of the low-variance (E) and high-variance (F)
exons normalized between 0 and 1 for all chicken chromosomes and separated
into 100 bins (bars).The height of each bar represents the number of genes in
that specific relative location. The two distributions in (E) and (F) are sig-
nificantly different (P < 2.2 × 10–16, Wilcoxon rank sum test on grouped
values). For further details, see SM11.

A FLOCK OF GENOMES 



broadly, the Columbea and Passerea clades ap-
pear to have many ecologically driven convergent
traits that have led previous studies to group them
into supposedmonophyletic taxa (8, 17, 25). These
convergences include the footpropelled diving
trait of grebes in Columbea with loons and cor-
morants (15) in Passerea, the wading-feeding trait
of flamingos in Columbea with ibises and egrets
(24,99) inPasserea, andpigeonsandsandgrouse in
Columbea with shorebirds (killdeer) in Passerea
(24). These long-known trait and morphological
alliances suggest that some of the traditional
nongenomic trait classifications are based on
polyphyletic assemblages.
In conclusion, our genome-scale analysis sup-

ports the hypothesis of a rapid radiation of diverse
species occurringwithin a relatively short period of
time (36 lineages within 10 to 15 million years;
Fig. 1) during the K-Pg transition, with many
interordinal divergences in the 1- to 3-million-year
range. This rate of divergence is consistent with
modern speciation rates, but it is notable that so
many lineages from a single stem lineage survived
extinction. Subsequent ecological diversification of
surviving lineages is consistent with a proliferation
of the earliest fossil stem representatives of most
modern orders by the latest Paleocene to Eocene.
Our finding is broadly consistent with recent
estimates for placental mammals [(100), but see
SM12 (101)] and thus supports the hypothesis
that the K-Pg transition was associated with a
rapid species radiation caused by a release of
ecological niches following the environmental
destruction and species extinctions linked to
an asteroid impact (2, 4, 5, 102).
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