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Abstract.—Sequence capture and restriction site associated DNA sequencing (RAD-Seq) are two genomic enrichment
strategies for applying next-generation sequencing technologies to systematics studies. At shallow timescales, such as within
species, RAD-Seq has been widely adopted among researchers, although there has been little discussion of the potential
limitations and benefits of RAD-Seq and sequence capture. We discuss a series of issues that may impact the utility of
sequence capture and RAD-Seq data for shallow systematics in non-model species. We review prior studies that used both
methods, and investigate differences between the methods by re-analyzing existing RAD-Seq and sequence capture data
sets from a Neotropical bird (Xenops minutus). We suggest that the strengths of RAD-Seq data sets for shallow systematics
are the wide dispersion of markers across the genome, the relative ease and cost of laboratory work, the deep coverage and
read overlap at recovered loci, and the high overall information that results. Sequence capture’s benefits include flexibility
and repeatability in the genomic regions targeted, success using low-quality samples, more straightforward read orthology
assessment, and higher per-locus information content. The utility of a method in systematics, however, rests not only on
its performance within a study, but on the comparability of data sets and inferences with those of prior work. In RAD-
Seq data sets, comparability is compromised by low overlap of orthologous markers across species and the sensitivity
of genetic diversity in a data set to an interaction between the level of natural heterozygosity in the samples examined
and the parameters used for orthology assessment. In contrast, sequence capture of conserved genomic regions permits
interrogation of the same loci across divergent species, which is preferable for maintaining comparability among data sets
and studies for the purpose of drawing general conclusions about the impact of historical processes across biotas. We argue
that sequence capture should be given greater attention as a method of obtaining data for studies in shallow systematics
and comparative phylogeography. [Allele frequency spectrum; birds; coalescent methods; concordance analysis; massively
parallel sequencing; next-generation sequencing; ultraconserved elements.]

New sequencing technologies promise to provide
increasingly detailed estimates of species and
population histories by resolving rapid radiations
(Wagner et al. 2013), improving demographic parameter
estimates (Jakobsson et al. 2008), and identifying
regions of the genome under selection (Wang et al.
2009). Researchers have recently adopted widely
divergent strategies, however, in the approaches used
to generate data for molecular systematics. Restriction
site associated DNA sequencing (RAD-Seq) is the most
widespread method for obtaining genomic data sets
from non-model organisms, particularly for population
genetic and phylogeographic studies (reviewed in
Narum et al. 2013), and these data are also being
increasingly used for phylogenetics (e.g., Eaton and
Ree 2013; Wagner et al. 2013). In contrast, sequence
capture approaches, typically targeting exons or other
conserved portions of the genome, have been used
primarily for reconstructing phylogenies (e.g., Faircloth
et al. 2013; McCormack et al. 2013; Leaché et al. 2014).
Sequence capture data are also useful for population
genetic and phylogeographic studies (Carstens et al.

2013; Smith et al. 2014; McCormack et al. 2015), although
few researchers have adopted this method for studies
at shallow timescales. Other current genomic methods
are less applicable to systematics, either because
they require high-quality samples for RNA extraction
(transcriptomics; Morin et al. 2008; Künster et al. 2010),
which are poorly represented in genetic resources
collections, or because they remain prohibitively
expensive when applied to many samples and species
(whole genome sequencing; Ellegren 2014; but see
Lamichhaney et al. 2015; Nater et al. 2015). Although
RAD-Seq and sequence capture are both promising tools
for population genetics, phylogeography, and shallow
phylogenetic studies of non-model organisms, a more
careful consideration of their potential weaknesses and
strengths is warranted.

Differences in the potential utility of RAD-Seq and
sequence capture stem from a set of issues that affect
the resulting data sets. These issues are related to the
function and distribution of the loci targeted, the cost
of library preparation and sequencing, the assessment
of sequence read orthology and locus assembly, the
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accuracy of variant calling and genotyping, and the
information content within and across resulting loci.
Each issue affects data sets in ways that may bias
downstream analyses such as phylogeny reconstruction
and demographic parameter estimation (Huang and
Knowles 2014; Mastretta-Yanes et al. 2014; Harvey et al.
2015), and all issues may impact reproducibility and
comparability of inferences across studies and species.
Differences in the effects of each issue between RAD-Seq
and sequence capture methods may determine which is
preferable for particular applications in systematics, but
there has been no thorough discussion of these issues
that considers the relative merits of both RAD-Seq and
sequence capture approaches.

Here, we review the major issues impacting the
utility of next-generation sequencing data sets applied
to systematics studies in non-model species, discuss
differences in the importance of each issue relative
to RAD-Seq and sequence capture data sets, and
examine how each issue might affect down-stream
systematics analyses. We focus on applications to
“shallow systematics”, a term we use to encompass
the diversity of population genetic, phylogeographic,
and phylogenetic analyses currently employed by
systematics researchers studying variation among
populations or closely related species. We review
existing studies and re-analyze previously published
RAD-Seq and sequence capture data sets from the
same population-level samples of a Neotropical bird
(Plain Xenops, X. minutus) to provide an empirical
example of the differences between methodological
approaches. We argue that, although sequence capture
and RAD-Seq are both useful for different applications
in shallow systematics, sequence capture is better suited
for making comparisons among data sets and studies
and for drawing general conclusions about the processes
responsible for similarities and differences in population
history across species. Unlike RAD-Seq data, which
are essentially one-off data sets, sequence capture data
represent a lasting, amplifiable resource for comparative
studies at multiple taxonomic scales.

OVERVIEW OF RAD-SEQ AND SEQUENCE CAPTURE

Previous authors have described, in detail, the various
strategies for conducting RAD-Seq (e.g., Davey et al.
2011; Elshire et al. 2011; Peterson et al. 2012; Wang
et al. 2012; Stolle and Moritz 2013) and sequence capture
studies (e.g., Gnirke et al. 2009; Mamanova et al. 2010;
Bi et al. 2012; Faircloth et al. 2012; Lemmon et al.
2012; Hedtke et al. 2013; Li et al. 2013; Fortes and
Paijmans 2015), so we only present a brief review of
the methods. We use RAD-Seq to refer to the family of
methods using restriction enzyme digests for genome
reduction and high-throughput sequencing, including
methods termed “genotyping by sequencing” (GBS).
RAD-Seq involves digesting genomic DNA with one or
more enzymes, adding platform-specific adapters to the
fragments, and selecting fragments for sequencing that

fall within a particular size distribution (Fig. 1a). This
digestion reduces the genome by sampling only those
regions near cut sites or where cut sites occur within
a certain distance of one another (Baird et al. 2008).
Variations on this general method differ primarily in
the number of enzymes used (one or two), the types of
enzymes used and the frequency of their targeted cut
sites, whether random shearing is used on one end, and
the approaches used for size selection (Davey et al. 2011;
Stolle and Moritz 2013). Sequence reads are distributed
around cut sites depending on the method; for example,
single reads bordering a single cut site or paired reads
widely spaced around a single cut site as in the original
RAD-Seq (Baird et al. 2008), single reads adjacent to two
nearby cut sites either for the same (Elshire et al. 2011;
Stolle and Moritz 2013) or different (Peterson et al. 2012)
enzymes, or a single read straddling a cut site (Wang et al.
2012; Fig. 1c). In most RAD-Seq methods, all fragments
from a given locus have at least one static end (the cut
site), meaning that sequence reads are not randomly
distributed around a given cut site, which restricts the
assembly of longer sequences from RAD-Seq reads.
Although variations involving paired-end sequencing
can produce longer alignments (Willing et al. 2011), most
RAD-Seq techniques focus on collecting short sequences
or single-nucleotide polymorphism (SNP) data from
groups of short sequences.

Sequence capture involves preparing DNA libraries
from randomly fragmented DNA templates and
hybridizing these libraries to sets of biotinylated
synthetic oligonucleotide probes, also called baits
(Gnirke et al. 2009). The probes typically have lengths
of 60–120 bases and the sequence of each probe is
complementary to one of hundreds or thousands of
genomic regions of interest selected by the researcher
from available sequence data (Fig. 1b). In the absence
of existing genomic resources for a taxonomic group
of interest, probes from genomic regions that are
conserved across divergent taxa (e.g., all amniotes,
hymenoptera, or similar) can be used (Faircloth et al.
2012, 2015). Streptavidin-coated paramagnetic beads are
used to attract the biotinylated probes and hybridized
(target) DNA library fragments, unwanted (non-target)
portions of the DNA library are washed away, and
targeted fragments are then released from the beads for
sequencing (Gnirke et al. 2009; Fisher et al. 2011). Because
probes can be tiled across longer regions and enriched
fragments are distributed in different positions across
targeted loci, reads from sequence capture can be used
for assembly of longer sequences (Fig. 1d). The length of
contigs formed from sequence capture data is a function
of the number and distribution of probes, library insert
size, and read depth.

RE-ANALYSIS OF EXISTING DATA

Although an increasing number of both sequence
capture and RAD-Seq studies present results pertinent
to the issues we describe below, drawing comparisons
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FIGURE 1. Diagrams of laboratory steps generally required for RAD-Seq (a) and sequence capture (b) as well as typical read distributions from
sequencing genomic libraries from various RAD-Seq (c) and sequence capture (d) methods. In (c), enzyme cut sites are depicted using arrows,
and differently shaded arrows represent cut sites for different enzymes.

between studies is challenging because they often
differ dramatically in sampling and, most importantly,
in the methodological decisions made during the
process of collecting and processing sequence data.
We therefore supplement our review of existing
studies with re-analysis of published RAD-Seq and
sequence capture data sets, and we process these

data using settings that maintain as much consistency
as possible between each data set. Specifically, we
analyzed RAD-Seq (Harvey et al. 2015) and sequence
capture (Smith et al. 2014) data collected from the same
eight individuals (Supplementary Table S1, available
on Dryad at http://dx.doi.org/10.5061/dryad.604b8)
of a non-model Neotropical bird, the Plain Xenops
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(X. minutus; family Furnariidae). Populations of X.
minutus, which occurs in lowland Neotropical forests,
began diverging roughly 5 Ma (Smith et al. 2014),
and a deep divergence is present between populations
on either side of the Andes Mountains (Harvey and
Brumfield 2015). We sampled four individuals from
populations west of the Andes Mountains and four from
populations east of the Andes. We collected RAD-Seq
data from all samples using a GBS approach (Elshire
et al. 2011), and we collected sequence capture data from
ultraconserved elements as described in Faircloth et al.
(2012) and Smith et al. (2014). Overall sequencing effort
was higher for sequence capture (each sample was 1 of 44
on an Illumina Hi-Seq lane) than RAD-Seq (each sample
was 1 of 96 on an Illumina Hi-Seq lane) resulting in an
average of 4.96 times higher overall raw read counts in
the sequence capture data sets (Supplementary Table S2,
available on Dryad). We elected not to normalize read
counts because there are diverse potential criteria for
normalization (e.g., total number of reads, reads in
the assembly, mean read depth at variable sites), none
of which would necessarily yield equivalent data sets.
Instead, we generally examine results that may be
sensitive to variation in read depth across assemblies but
not to absolute read depths. Although the fundamental
attributes of RAD-Seq and sequence capture data sets
necessitate the use of different methods for data set
assembly, thereby reducing comparability, we used
approaches and parameter settings for processing that

TABLE 1. Summary of Xenops minutus Dataset Attributes.

UCEs RAD-Seq

Number of loci 1358 158,329
Mean locus length (SD) 590.36 (209.21) 95.55 (0.62)
Mean number of segregating sites (SD) 4.07 (3.57) 1.35 (1.56)
Mean number of alleles (SD) 4.52 (2.88) 2.04 (1.14)
Mean Watterson’s Theta (SD) 0.0021 (0.0017) 0.0057 (0.0065)
Mean Tajima’s D (SD) −0.36 (0.82) 0.59 (0.90)

were as similar as possible between data sets (see
Supplementary Information, available on Dryad). For
RAD-Seq data, we re-processed raw sequence reads and
conducted de novo assembly using Stacks (Catchen et al.
2011, 2013), and for the sequence capture data we re-
processed raw sequence reads using a custom pipeline
for assembly of population-level sequence capture
data sets (https://github.com/mgharvey/seqcap_pop,
last accessed 30 April 2016; details in Supplementary
Information, available on Dryad) that use some functions
from the PHYLUCE package (Faircloth 2015). For both
RAD-Seq and sequence capture data, we explored a
series of sequence similarity thresholds for assembly and
minimum read depths for calling alleles (see below), but
we conducted all other analyses on data sets assembled
using a 96% similarity threshold with the requirement
of 7× minimum read depth per allele (Table 1). We refer
to these data sets throughout as the X. minutus RAD-Seq
and sequence capture data sets.

ISSUES IN NEXT-GENERATION SEQUENCING DATA SETS

The issues that determine the content of next-
generation sequencing data sets are diverse and variable
across methods, and we focus here on those issues that
we think deserve the greatest weight when selecting
RAD-Seq or sequence capture for a project in shallow
systematics. We summarize differences in how each
issue impacts sequence capture and RAD-Seq in Table 2.

Marker Distribution and Genomic Context
Restriction enzymes for RAD-Seq are often selected to

cut at sites widely distributed across the genome while
avoiding repetitive regions (Elshire et al. 2011). As a
result, RAD-Seq sites may come from diverse coding
and non-coding regions (Elshire et al. 2011; DaCosta
and Sorenson 2014) having potentially heterogeneous
genomic contexts and histories. RAD-Seq loci are not

TABLE 2. Pros, Cons, and Applications of RAD-Seq and Sequence Capture Datasets.

Category RAD-Seq Sequence capture

Marker distribution and genomic context Pro: Widely dispersed across genome Pro: Can be tailored using new genomic
information

Con: Anonymous, evolutionary
processes largely unknown

Con: Purifying selection impacts allele frequencies

Practical considerations Pro: Less expensive, faster Pro: Works with low-quality and highly
contaminated samples

Assembly and orthology identification Pro: Deep coverage, high read overlap Pro: Over-splitting less problematic
Variant-calling and genotyping Pro: Fewer rare alleles may make errors

easier to distinguish, phasing more
straightforward

Pro: Fewer low-coverage rare alleles, no allele
dropout

Information content Pro: More overall information Pro: More information per locus
Applications Genome scans, rapid and inexpensive

analyses, analyses using species in
clades without genomic information,
extremely shallow divergences and
otherwise intractable relationships.

Comparisons across species, calibrating parameter
estimates, targeting loci of known utility or
interest, studies using poor-quality samples,
studies requiring resolved gene trees, deeper
phylogenetic studies.
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FIGURE 2. Genomic distributions of RAD-Seq loci (blue dots above the line) and ultraconserved elements (red dots below the line) from
Xenops minutus when mapped to the 10 longest scaffolds in the genome assembly for Manacus vitellinus. Paler, yellow spots on the scaffolds are
the locations of predicted protein-coding genes.

necessarily dispersed randomly throughout the genome,
however, in part due to a preponderance of cut sites in
regions with particular base compositions (DaCosta and
Sorenson 2014).

Sequence capture in non-model species typically
targets portions of the genome adjacent to highly
conserved regions, such as ultraconserved elements
(Faircloth et al. 2012) and conserved exons (Bi et al. 2012;
Hedtke et al. 2013; Li et al. 2013). Conserved regions
are generally selected such that they are distributed
widely across available genomes (Faircloth et al. 2012).
Ultraconserved elements may serve a structural or
regulatory function and their conservation across deep
evolutionary timescales may be indicative of strong
purifying selection (Bejerano et al. 2004; Katzman et al.
2007), while exons may experience selection of various
types, including purifying selection (Ward and Kellis
2012). Researchers using conserved sequences and exons
have generally not selected loci based on their genomic
distribution.

Because data directly comparing the distributions and
genomic contexts of RAD-Seq and sequence capture are
generally lacking, we explored these in our example
taxon. We used Blastn (Altschul et al. 1997) to map
both sets of loci to the closest genome assembly, a
Golden-collared Manakin (Manacus vitellinus; Zhang
et al. 2014) in a different family (Pipridae) but the
same suborder (Tyranni) as Xenops (diverging 61–65 Ma;
Barker et al. 2004). Using default Blastn settings, 99.4%
of UCE loci successfully mapped to the Manacus genome
compared with 17.7% of the RAD-Seq loci. The low

proportion of RAD-Seq loci successfully mapping to the
Manacus genome is consistent with the relatively low
proportion of loci that are conserved across such deep
evolutionary timescales in other studies of birds (e.g.,
McCormack et al. 2012). We used variance in the mean
distance between loci across the 92,756 scaffolds in the
Manacus genome as an index of the level of clustering
(Fig. 2). Both UCEs and RAD-Seq loci recovered from
X. minutus are more clustered than 1000 randomly
positioned loci identified through simulations (p<0.001;
Supplementary Figs. S1a,b and S2a,b, available on
Dryad), but the UCEs are more clustered than are all
but 1 of 1000 random subsets of the RAD-Seq loci equal
in size to the UCE data set (p=0.001; Supplementary
Fig. S1c, available on Dryad). The RAD-Seq loci are closer
both to predicted protein-coding genes (33.4±71.3 kbp)
and repetitive elements (3.8±4.9 kbp) than are UCEs
(55.0±84.1 kbp from genes, 4.3±4.3 kbp from REs).
When mapped to a more distant genome (Taeniopygia
guttata; Warren et al. 2010) with chromosome assemblies
available, we found that the proportion of RAD-Seq and
sequence capture loci on each chromosome was similar
(R2 =0.85, p=2.12×10−12; Supplementary Figs. S2 and
S3c,d, available on Dryad).

In the X. minutus data sets, Tajima’s D is lower
(mean=−0.36, SD=0.82) in sequence capture loci than
in RAD-Seq loci (mean = 0.59, SD = 0.90), consistent
with the expected effects of purifying selection (Hartl
and Clark 2006). Recent evidence suggests few genomic
regions are truly “neutral” (Andolfatto and Przeworski
2000; Schmid et al. 2005), and examinations of neutral
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population or species history may need to account
for the action of selection, regardless of the loci
under examination. Overall, RAD-Seq may better target
heterogeneous genomic regions and be more applicable
when used across species in taxonomic groups with very
little genomic information. Sequence capture is flexible
in that probe sets can be augmented or pruned as more
genomic information becomes available for a group of
interest or as loci are found to be more or less “neutral”
or useful for a particular purpose.

Practical Considerations
Both RAD-Seq and sequence capture can be conducted

with relatively small amounts of whole genomic DNA,
such as those present in many museum samples.
Sequence capture can often be achieved with templates
of very low concentration or quality (Bi et al. 2012;
Guschanski et al. 2013; McCormack et al. 2015).
Many RAD-Seq methods require input DNA of higher
molecular weight, but some protocols have been
developed for samples of poor quality or concentration
(e.g., Tin et al. 2014; Graham et al. 2015). In addition,
sequence capture methods using RAD-Seq libraries as
probes may allow RAD loci to be recovered from low-
quality samples (Suchan et al. 2015), and sequence
capture of RAD loci may perform similarly (Ali et al.
2015; Hoffberg et al. 2016).

Although next-generation sequencing platforms have
dramatically reduced the cost and time involved in
sequencing (Glenn 2011; Wetterstrand 2015), funding
and time may still be limiting in large comparative
studies due to expensive library preparations and
limitations on the number of samples that can be
multiplexed on a single sequencing lane (Harris et al.
2010). The cost of equipment purchase is negligible
because both RAD-Seq and sequence capture can be
conducted using equipment that is standard in most
molecular laboratories (Gnirke et al. 2009; Elshire et al.
2011), although a sonicator is necessary for some
library preparation methods used in sequence capture
protocols. Sequence capture is generally more expensive
than RAD-Seq due to the costs associated with more
involved library preparation and purchasing enrichment
probes. For our X. minutus data sets, sample preparation
and sequencing for RAD-Seq data sets cost roughly
$40 US per sample and sequence capture data sets
cost roughly $60 per sample. Sequence capture may
also require greater sequencing depth (to get sufficient
coverage of more variable regions flanking conserved
probe targets) and thus have a higher sequencing cost
than RAD-Seq on a per locus basis. Depending on the
success of an enrichment procedure, sequence capture
may more efficiently target single-copy loci. However,
in the X. minutus data sets, an average of only 5.0%
of raw reads was in final assemblies in the sequence
capture data set, versus 40.1% in the RAD-Seq data
set (Supplementary Table S2, available on Dryad). This
disparity may be due to poor enrichment success in

the sequence capture samples we analyzed (Smith et al.
2014).

Similarly, time investment is modest for both methods
(Gnirke et al. 2009; Elshire et al. 2011), although sequence
capture is slower due to the additional hybridization and
enrichment steps. For 96 samples, library preparation
for RAD-Seq can be completed in about two days,
whereas an equivalent number of sequence capture
libraries can be prepared in 2–4 days. Commercial library
preparation and sequencing services, requiring only
quantified whole-genomic DNA, are available for both
RAD-Seq and sequence capture. Commercial sequence
capture services also require a list of target sequences
from which to synthesize probes.

Assembly and Orthology Identification
In next-generation sequencing workflows, the process

of data set assembly is non-trivial, and its success
depends on the attributes of the reads coming off the
sequencer as well as the methodological decisions made
during bioinformatics processing. Assembling reads
into sequences and aligning them across individuals into
loci is a critical component of processing next-generation
sequencing data sets and has received the most attention,
particularly in prior studies of the utility of RAD-Seq
data for systematics (e.g., Rubin et al. 2012; Cariou et al.
2013). A primary initial concern in orthology assessment
of next-generation sequence reads was whether, in
divergent lineages separated by millions of years of
evolutionary history, reads could be reliably recovered
from sufficient loci for historical inference. It is now
clear that, even in less conserved regions such as those
potentially targeted by RAD-Seq protocols, at least some
orthologous data can be recovered for population-level
analyses and phylogenetic analyses involving species
with divergences of up to 60 Ma or more (Rubin et al.
2012; Cariou et al. 2013).

A secondary issue, however, is whether the process
of orthology assessment introduces biases in the
resulting data sets that affect downstream analyses.
Interactions between sequence divergence and the
assembly parameters selected during data processing
can have profound effects on resulting data sets. Many
assembly programs are available (e.g., Zerbino and
Birney 2008; Simpson et al. 2009; Catchen et al. 2011) and
all use sequence similarity, in some form, to assemble
reads. Reads with high sequence similarity are expected
to come from the same locus and are assembled, whereas
those with low similarity are expected to come from
different loci and are not (Pop and Salzberg 2008;
Chaisson et al. 2009). A threshold is used to determine
which reads belong to a single locus, but variation
in genetic divergence across the genome and among
study systems makes determination of an appropriate
threshold challenging (Ilut et al. 2014; Harvey et al. 2015).
If the similarity threshold applied is too low, reads from
different loci will be assembled into a single locus and
treated as orthologous (undersplitting), whereas if the
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threshold is too high, alleles belonging to a single locus
may be split into separate alignments (oversplitting).

The use of similarity thresholds for assembly is a
concern for both RAD-Seq and sequence capture studies.
Undersplitting may be frequent in RAD-Seq data sets
if enzyme cut sites in different genomic regions fall
within similar sequences, although previous results
from simulated and empirical RAD-Seq data suggest
that undersplitting is very infrequent (Ilut et al. 2014) and
does not introduce enough signal to impact downstream
analyses (Rubin et al. 2012). In many sequence capture
approaches, loci are vetted to ensure they are single-copy
in existing genome sequences (e.g., Faircloth et al. 2012),
but the possibility of paralogous reads assembling to
these loci in other taxa exists. That said, high sequence
similarity within conserved regions may permit easier
discrimination between orthologous and paralogous
reads in sequence capture data sets, and the biology of
ultraconserved elements suggests that paralogy is low
(Derti et al. 2006).

We examined the relative frequency of undersplitting
in RAD-Seq and sequence capture data sets from
X. minutus. Examining raw assemblies, we used the
number of alignments containing individuals with three
or more alleles (birds are diploid) as an index of
the frequency of putative paralogy (Ilut et al. 2014;
Harvey et al. 2015). Given the use of a stringent
depth setting per allele to remove errors (7× coverage),
loci containing individuals with three or more alleles
likely represent paralogous sequence rather than loci
containing alleles resulting from sequencing errors. We
found that undersplitting is of roughly equal and very
low (<0.6% of loci) prevalence in both RAD-Seq and
sequence capture data sets assembled under a range of
similarity thresholds, although undersplitting increased
slightly at more liberal thresholds (Supplementary
Fig. S4, available on Dryad). The undersplit loci were
identified and easily removed from both data sets.
These results suggest undersplitting and paralogy are a
relatively minor concern for both RAD-Seq and sequence
capture data sets, at least in species without highly
repetitive genomes and when examining relatively
recently diverged samples that do not necessitate the use
of liberal similarity thresholds.

Oversplitting may be frequent in short read data
sets when high similarity among reads is required for
assembly (Ilut et al. 2014). In de novo RAD-Seq assembly,
oversplitting results in the separation of alternative
alleles at a locus into separate alignments. Conversely,
in sequence capture data sets, because reads are being
aligned to a sequence determined a priori, oversplitting
results in the loss of reads and therefore alleles that
are highly divergent from the reference. High similarity
thresholds for locus assembly, such as 98% or 99%,
are often used with short read data sets (e.g., Catchen
et al. 2011; Lu et al. 2013), potentially exacerbating the
issue of oversplitting. The net result of oversplitting
in both RAD-Seq and sequence capture data sets is
a decrease in the average number of alleles detected
within loci. We explored the frequency of oversplitting in

RAD-Seq and sequence capture using the data sets from
X. minutus. We used the loss of alleles at a high similarity
threshold (99%) relative to a lower similarity threshold
(94%) as an index of the prevalence of oversplitting.
We found that using a stringent similarity threshold
resulted in an average loss of 19.4% of alleles in the
RAD-Seq data set, whereas the same similarity threshold
resulted in a loss of 6.9% of alleles in the sequence
capture data set (Fig. 3a). Oversplitting appeared to
level out around 96% similarity, hence the use of that
threshold in the primary analyses. Oversplitting may be
more severe in the RAD-Seq data set both because of
greater divergence among alleles within RAD-Seq loci
relative to sequence-captured ultraconserved elements
and because each oversplit locus results in two less
variable alignments in RAD-Seq data. In sequence
capture, conversely, oversplitting results in only one less
variable locus because reads are aligned to a sequence
that is determined a priori. Although using less stringent
similarity thresholds for assembly can alleviate the
impact of oversplitting (Ilut et al. 2014; Harvey et al. 2015),
RAD-Seq data sets may be more sensitive to this key
assembly parameter.

High conservation and low paralogy in sequence
capture of conserved loci may improve discrimination
of orthologous versus paralogous reads and be more
amenable to assembly under low similarity thresholds.
Correctly assessing orthology reduces bias in parameter
estimates (Mastretta-Yanes et al. 2014), and improves the
comparability of genetic diversity and inferences across
studies (Harvey et al. 2015). The challenges associated
with orthology assessment described above are also
present, albeit less severe, in situations in which loci are
assembled to a reference genome.

Variant Calling and Genotyping
Calling variants and genotyping individuals is the

next important step after assembly when processing
next-generation sequencing data, and this process is
equally fraught with potential issues. Polymerase chain
reaction (PCR)-related (Dunning et al. 1988; Eckert
and Kunkel 1991) and short-read sequencing errors
(“sequencing errors”, hereafter) introduce spurious
nucleotides or indels that may be identified as alleles
if they are not correctly vetted (Dohm et al. 2008).
Sequencing errors are problematic in both sequence
capture and RAD-Seq data sets. The impact of
sequencing errors on a data set can potentially be
reduced both by using filters and by calling alleles in
a probabilistic framework (Nielsen et al. 2011).

Sequence read depth and evenness of sequence read
depth across alleles are perhaps the most critical pieces
of information researchers can use to distinguish true
alleles from errors. Thus, differences in read depth or
evenness across alleles between sequence capture and
RAD-Seq may impact the relative success of variant
calling between the two methods. Sequence capture
and many RAD-Seq approaches require PCR to obtain
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FIGURE 3. a) The reduction in alleles in sequence capture and RAD-Seq data sets when using stringent similarity thresholds for assembly.
b) The increase in singleton alleles (potential errors) in RAD-Seq and sequence capture data sets at lenient minimum read depth thresholds for
alleles. c) Frequency spectra of all alleles at polymorphic loci in Xenops minutus sequence capture and RAD-Seq data sets processed using a 96%
similarity threshold and requiring 7× read depth per allele.

sufficient template for sequencing, and PCR can result
in amplification bias and inconsistent coverage across
alleles (Aird et al. 2011). Read depth in sequence
capture data sets is often higher in the conserved
regions targeted by the probe than in the more variable
flanking regions (Fig. 1d), which are critical for calling
variants. RAD-Seq data sets may also exhibit high
variability in read depth across loci or amplification bias
between alleles that decreases the evenness of coverage
(DaCosta and Sorenson 2014). In both methods, the
minimum of required PCR cycles should be used and
DNA polymerases with reduced GC bias should be
used to reduce amplification bias (Quail et al. 2012).
PCR duplicate reads should be also removed during
bioinformatics processing (Casbon et al. 2011). These
are straightforward to remove from sequence capture
libraries (Sulonen et al. 2011), but PCR duplicate reads
cannot be detected in RAD-Seq data sets without adapter
modifications (Andrews et al. 2014; Schweyen et al.
2014) because even non-duplicate reads are often entirely
overlapping.

We assessed the frequency of putative errors in RAD-
Seq and sequence capture data from X. minutus by
examining the relative read depth across rare (singleton)
SNP alleles we identified in the alignments. As expected,
we found that a low read depth filter (requiring
3× coverage per allele) resulted in larger data sets
(Supplementary Fig. S5, available on Dryad), but a low
read depth filter also resulted in more singleton alleles
than assemblies requiring higher coverage (11×) (Fig. 3b
and Supplementary Fig. S6, available on Dryad). The
number of singletons recovered appeared to level out
around 7× coverage in both data sets, which is the
reason we selected this threshold for analysis of the
primary data sets. The RAD-Seq data set, however, was
more impacted by the read depth filter we applied; we
recovered 8.0 times as many singletons at 3× depth than
we recovered at 11× depth, compared with only 4.6
times as many singletons at 3× versus 11× depth in the
sequence capture data set (Fig. 3b). This suggests that a
high proportion of singleton alleles in our RAD-Seq data
set had low coverage and may represent spurious allele
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calls. Alternatively, the high frequency of singletons in
the RAD-Seq data set could be a result, not of lower
absolute coverage, but of greater disparity in coverage
across loci relative to the sequence capture data set. It is
possible protocols could be optimized to reduce coverage
bias, for example by reducing the number of loci targeted
in the RAD-Seq protocol or multiplexing fewer samples
per sequencing lane.

Aside from sequencing errors, other artifacts can
be observed in the allele frequency spectrum and
can potentially be removed at the variant calling
stage. Any lingering paralogous data present in an
assembly (see above) can potentially be vetted during
the variant calling process. High heterozygosity is
typically attributed to paralogy because it may reflect
the inclusion of sequences from two divergent loci in a
single alignment (Hohenlohe et al. 2011). Paralogs can
be removed by filtering for heterozygosity (although
this can also remove highly variable loci or loci under
diversifying selection) or by filtering for loci with
higher-than-expected read depth. Allele dropout due to
restriction site polymorphisms is a different problem
that may result in elevated homozygosity because
individuals that would be heterozygous appear as
homozygotes (but see Gautier et al. 2013), and it is unique
to RAD-Seq data sets. Within recently diverged species
and species with small effective population sizes, allele
dropout may not be severe, but it is likely to increase in
data sets including multiple species or deeply diverged
populations (DaCosta and Sorenson 2014).

The spectrum of expected allele frequencies in a
set of markers affects the ability to detect artifacts.
Rare alleles representing errors may be more difficult
to identify in conserved loci targeted by sequence
capture because we expect a high proportion of rare
alleles under purifying selection (Hartl and Clark 2006).
Conversely, loci containing paralogous reads resulting
in high heterozygosity may be easier to distinguish in
conserved loci if there is lower overall heterozygosity in
these regions.

Examining allele frequency spectra from the X.
minutus data sets reveals patterns that may be due to
the artifacts mentioned above and to real differences
between RAD-Seq and sequence capture loci (Fig. 3c).
The conserved loci recovered from sequence capture
had higher overall frequencies of singleton alleles than
the RAD-Seq loci (48% of alleles from sequence capture
vs. 22% from RAD-Seq; Fig. 3c), consistent with the
action of purifying selection. About 77% of RAD-Seq
genotypes were homozygous versus 56% of sequence
capture genotypes in the X. minutus data set, and the
proportion of loci deficient in heterozygotes relative
to Hardy–Weinberg expectations was slightly higher
in the RAD-Seq (61%) than the sequence capture data
set (55%). This discrepancy may be due to a greater
effect of allele dropout, PCR bias, or low or uneven
sequencing coverage across loci in the RAD-Seq data
set resulting in one allele call in heterozygotes, or it
may be a result of real genotype frequency differences
between the sets of markers. It is difficult to draw

conclusions, however, from the differences in allele
frequencies between RAD-Seq and sequence capture loci
based on a single data set due to the diversity of possible
explanations for lower heterozygosity in the RAD-Seq
data set, including the possibility that they result from
differences in sequencing effort.

Phasing alleles is a final important element in
variant calling when researchers need to reconstruct
haplotypes. In single-end RAD-Seq alignments, alleles
are phased based on whether they occur on the same
reads or not (read-backed phasing). In paired-end
RAD-Seq and sequence capture, however, reads are
not entirely overlapping and phasing of more distant
alleles may require probabilistic models. These models
use information from panels of reference individuals
sampled previously or from other individuals in the data
set to impute the most probable combinations of alleles
for heterozygous individuals. Model-based phasing
introduces an extra step, and potentially additional
estimation error, in data sets from paired-end RAD-Seq
and sequence capture.

Information Content
RAD-Seq generally results in greater total aligned

sequence and more potentially informative variable
nucleotide sites (hereafter “information”) than sequence
capture. The information in RAD-Seq data sets, however,
is partitioned into shorter loci. In X. minutus, for example,
we assembled 158,329 RAD-Seq loci averaging 95.6 (SD
= 0.62) bp in length, whereas for sequence capture we
obtained 1358 loci averaging 590 (SD = 209) bp in length
(Table 1). The total number of segregating sites for RAD-
Seq (213,740) was much higher than for sequence capture
(5524), but the mean number of segregating sites per
locus was higher for sequence capture: 4.07 (SD = 3.57)
versus 1.35 (SD = 1.56). RAD-Seq may be preferable for
estimating challenging parameters, at least in recently
diverged samples, because the greater number of
polymorphisms increases the chances of finding a shared
allele on a very short phylogenetic branch or detecting
a rare migration event. For approaches requiring more
information per locus, sequence capture would be
preferable.

POTENTIAL EFFECTS OF BIASES ON INFERENCES

The issues described above may shape data sets in
ways that make them more or less appropriate or
biased for downstream shallow systematics analyses.
Sequence capture and RAD-Seq data sets yield broadly
concordant results for phylogenetic analyses among
species, depending on the steps used for data set
assembly (Leaché et al. 2015; Collins and Hrbek 2015;
Manthey et al. 2016), but their relative utility for
population genetic and phylogeographic analyses that
are applied within species is largely unexplored. In this
section, we discuss how these issues might impact a
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range of typical population genetic, phylogeographic,
and phylogenetic analyses that are often applied at
shallow timescales. The results of analyses of the
empirical data sets presented here are not intended as
a direct comparison of the applicability of RAD-Seq and
sequence capture data, which in reality would probably
not be examined with the same methods, but rather to
demonstrate how the issues discussed above can result
in divergent inferences between methods.

Genome-wide scans to identify signatures of selection
or gene flow are often conducted in studies using RAD-
Seq loci due to their dense distribution across the genome
(Hohenlohe et al. 2010). Conserved regions targeted by
sequence capture may be insufficiently dispersed across
the genome for use in genome-wide scans. As discussed
above, mapping RAD-Seq loci to divergent genomes is
challenging, thus RAD-Seq may not be appropriate for
identifying the genomic context of outlier loci in species
without available genome assemblies. As with many
markers, RAD-Seq loci may come from heterogeneous
genomic regions impacted by diverse neutral and non-
neutral processes, so scans will need to account for
alternative explanations of outlier loci or migrant alleles.

Demographic inference is popular in population
genetics and phylogeography, and may be affected by
the distribution of allele frequencies in a data set.
Purifying selection on conserved regions may leave
signatures, such as an excess of rare alleles, that
complicate estimation of neutral demographic histories.
Allele loss and heterozygote deficiencies in RAD-Seq
data sets may also affect estimates of demographic
parameters including theta (�=4Ne�) and admixture.
We estimated demographic parameters using gene trees
in BP&P v.3.2 (Yang and Rannala 2010) and using SNP
frequency spectra in ∂a∂i v.1.7.0 (Gutenkunst et al. 2009)
with both RAD-Seq and sequence capture data from
X. minutus. The demographic model used included two
daughter populations comprising the four samples from
west of the Andes Mountains and the four samples
from east of the Andes Mountains, both of which
diverged from a common ancestral population. We
compared estimates of effective population size by
normalizing the divergence time estimates from RAD-
Seq and sequence capture data sets. We found that in
both BP&P and ∂a∂i results, effective population sizes
in the daughter populations were fairly similar between
data sets (Supplementary Tables S3 and S4, available on
Dryad), but the estimate of ancestral effective population
size was lower from sequence capture than from RAD-
Seq data (Fig. 4b and Supplementary Fig. S7, available
on Dryad). The higher ancestral population size in
the RAD-Seq data could be due either to the loss of
shared variation among the daughter populations as
a result of allele dropout in the RAD-Seq data set,
or to the high frequency of rare alleles restricted to a
single population in the sequence capture alignments.
In addition, heterozygote deficiencies in the RAD-Seq
data set may underlie the somewhat lower population
sizes estimated in the daughter populations than those
estimated in the sequence capture data set.

Phylogenetic tree estimation to reconstruct the
relationships between populations is commonly used
in shallow systematics studies. Phylogeny estimation
may be complicated if allele loss results in a downward
bias in the mutational spectrum (Huang and Knowles
2014). This bias may produce shallower gene trees and
lower genetic distances (Harvey et al. 2015), particularly
between the most divergent individuals in a study.
We examined branch lengths from X. minutus trees
inferred using BUCKy v.1.4.3 (Larget et al. 2010), which
are estimated in coalescent units based on quartet
concordance factors for each branch. As observed in
prior studies (Leaché et al. 2015), internal branch lengths
from BUCKy trees estimated from RAD-Seq data were
short relative to those estimated from sequence capture
data in X. minutus, perhaps as a result of the loss of the
most divergent alleles (Fig. 4c,d). Terminal branches in
BUCKy trees for X. minutus are determined by the gene
trees from loci in which individuals are homozygous
for rare alleles. These branch lengths are longer in
the RAD-Seq tree than in the sequence capture tree,
consistent with the high levels of homozygosity we
observed in the RAD-Seq data set. The difference in
relative branch lengths between RAD-Seq and sequence
capture trees was not evident in trees estimated from
SNPs using SNAPP (Bryant et al. 2012), likely because
SNAPP removes sites with missing data, which would
bias overall tree depth rather than relative branch
lengths (Supplementary Fig. S8, available on Dryad).
Despite the differences in phylogenetic branch lengths,
relative genetic distances corrected using a JC69 model
(Jukes and Cantor 1969) among individuals were highly
correlated between RAD-Seq and sequence capture X.
minutus data sets (CADM test coefficient of concordance
= 0.935, p<0.001, Fig. 4a).

Both RAD-Seq and, to a lesser extent, sequence capture
loci have low per-locus information relative to many of
the genes traditionally targeted for Sanger sequencing
in systematics. Low per-locus information content
complicates analyses that depend on accurate parameter
estimates from individual loci. It may be challenging
to fit models of molecular evolution to loci due to
their low information content, and poorly resolved
gene trees may complicate analyses such as gene tree–
species tree estimation (Lanier et al. 2014). Concordance
analysis of gene trees from RAD-Seq and sequence
capture in X. minutus using BUCKy (Larget et al. 2010)
revealed that consensus relationships were supported by
relatively few loci (Fig. 4c,d). Most gene trees contained
polytomies as a result of low information content in
alignments. Concordance was lower among RAD-Seq
loci than among sequence capture loci, presumably due
to the lower resolution of RAD-Seq gene trees. The
consensus trees inferred across loci from both methods
were topologically identical, however, both using BUCKy
(Fig. 4c,d) and SNAPP (Supplementary Fig. S8, available
on Dryad). Moreover, nearly all nodes had high support
in the SNAPP trees from both RAD-Seq and sequence
capture. Methods that successfully integrate across the
small amounts of information present in many loci,
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FIGURE 4. Impacts of data set biases on inferences from systematic analyses of Xenops minutus data from RAD-Seq and sequence capture. a)
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ancestral populations, c) BUCKy tree from sequence capture and d) BUCKy tree from RAD-Seq, with node values representing the proportion
of gene trees from that data set containing each clade.

including methods that examine independent SNPs,
may be desirable for sequence capture and particularly
RAD-Seq data sets.

The large data sets produced by RAD-Seq and
sequence capture raise computational concerns.
Although the sizes of both RAD-Seq and sequence
capture data sets can be tailored according to
researcher needs, RAD-Seq data sets are generally
larger. Depending on the question being addressed,
very large data sets may not be needed and additional
data may unnecessarily complicate analyses (Davey
et al. 2011). Conversely, evolutionary events that are
difficult to estimate may require large amounts of data
to address, and larger data sets also offer the ability to
subsample loci informing a research question post-hoc.
To take advantage of the information in large data sets,
computationally demanding methods may have to take
a back seat to faster summary methods (e.g., Liu et al.
2009; Larget et al. 2010; Chaudhary et al. 2014).

COMPARING ACROSS DATA SETS AND CALIBRATING

PARAMETERS

The same RAD-Seq loci often cannot be recovered
across divergent species due to mutations at restriction

sites (Rubin et al. 2012) or variation in sequence coverage.
Studies have successfully recovered some shared loci
at moderately deep (∼60 Ma) timescales in Drosophila
(Rubin et al. 2012; Cariou et al. 2013), but sequence
capture is substantially more effective for recovering
the same loci, even at very deep timescales (up to
about ∼400 Ma; Faircloth et al. 2012; 2013). In birds, a
comparison of population-level RAD-Seq data sets from
across four species widely distributed across the avian
tree of life found that only 0.3–0.8% of loci overlapped
across all four (McCormack et al. 2012), whereas
population-level sequence capture data sets between any
2 of 40 bird species from diverse families had an average
of 92% overlap (Supplementary Information, available
on Dryad).

When identical loci cannot be recovered in different
data sets, comparability among studies relies on the
assumption that the set of loci in each species represents
a random sample from the genome. Based on the
discussion above, however, the diversity present in
RAD-Seq data sets is not random with respect to the
level of genetic variation and genome complexity in
the species being examined. Oversplitting is a major
issue in RAD-Seq data sets and it disproportionately
affects species with higher natural levels of divergence
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among alleles (Huang and Knowles 2014; Harvey et al.
2015). Species with higher divergence will lose more
variation than those with lower divergence, resulting
in a normalization of the variation present across data
sets assembled with the same parameters. In addition,
undersplitting may be a greater issue in species with
repetitive genomes (Ilut et al. 2014; Harvey et al. 2015).
Both oversplitting and undersplitting, therefore, could
result in similarities or differences among species that
are artifactual. Methods are available for informed
selection of assembly parameters to reduce the effects
of oversplitting and undersplitting (e.g., Ilut et al. 2014;
Harvey et al. 2015), but they are not widely applied,
and it is unclear whether they will be sufficient to
permit comparisons across species. Any differences
among data sets in the restriction enzymes or in the
assembly strategies used among studies will further
reduce comparability. Therefore, similar to studies of
microsatellites, many analyses using RAD-Seq loci
cannot easily be compared across species. Sequence
capture of loci containing conserved regions is preferred
for obtaining genomic data from a standard set of loci if
there is to be hope that data sets or inferences could be
directly compared across species.

Parameter calibration is also problematic when
data sets are not comparable across species. In
species or groups without fossil data or divergences
tied to dated geological events, estimating absolute
values for demographic and phylogenetic parameters
requires calibration, typically by applying standardized
substitution rates. Mutation rates, however, can only be
adopted from other studies when the loci examined
are the same or are expected to have similar rates of
evolution. Because different loci are examined in RAD-
Seq data sets, and the mutation rate in a data set may
be contingent on the impact of the assembly issues
mentioned above, there is little hope of developing
standardized mutation rate estimates. Calibration across
species should be possible in sequence capture data sets,
however, if data sets are assembled and variants called
in the same way, if the alignments are trimmed such that
they contain the same sites across species, and if subsets
of clock-like loci are identified (e.g., Doyle et al. 2015).

CONCLUSIONS

Although prior studies suggest RAD-Seq and
sequence capture are both useful for shallow systematics
and we observed broad concordance in RAD-Seq and
sequence capture data sets and resulting inferences,
the differences observed and discussed above suggest
these approaches are not equally useful for different
applications in shallow systematics. Sequence capture
holds more promise for obtaining data sets that are
comparable across species and for calibrating parameter
estimates for demographic or phylogenetic studies. In
addition, sequence capture is useful because marker
sets can be tailored according to the needs of the
researcher, because it is particularly effective with

low-quality samples, because data from new samples
can be easily added to an existing data set, because
orthology of sequence reads is relatively straightforward
to assess, and because sequences could be useful in other
studies at deeper evolutionary timescales. Completely
or partially shared probe sets among studies will
result in a growing, open source data matrix that
can be used for comparative phylogeographic and
phylogenetic analyses at multiple taxonomic scales.
RAD-Seq will continue to be useful as a fast and
inexpensive means to obtain large amounts of data,
and its application to single-species population studies,
genome scans, groups without genomic information,
and species with very shallow histories is sure to
continue. We suggest, however, that sequence capture
should be preferred, given sufficient resources, due to
the higher comparability and extensibility of data sets.

We anticipate that the importance of the issues
described in this article on data sets from sequence
capture and RAD-Seq will change as the methods for
each evolve and improve. Moreover, new methods are
sure to appear (e.g., Ali et al. 2015; Niedzicka et al.
2016; Hoffberg et al. 2016) and existing methods such
as whole-genome sequencing and re-sequencing will
become more affordable in the near future. Many of
the issues we have described transcend the genomic
methods discussed here, however, and will continue to
be relevant in discussions of the utility of new methods.
Regardless of the method applied, a premium should
be placed on maintaining comparability with other
studies such that results and inferences can be properly
incorporated into the body of systematics literature as a
whole.
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